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1 SUMMARY 

1.1 English Summary 

In the last decade, the application of genetically-encoded biosensors proved successful to 
establish novel and elaborated strategies for engineering microbial cell factories by enlarging the 
repertoire of metabolic engineering tools and by enabling unprecedented insights into 
bioprocesses at single-cell resolution. Especially, biosensors based on bacterial transcriptional 
regulators translating intracellular metabolite concentration into a measureable output proved to 
be of high value for a variety of metabolic engineering approaches. 

Although nature provides a plethora of transcriptional regulators to sense intrinsic and 
extrinsic stimuli, only a few regulators and their respective target promoters have been well 
characterized to date. This hampers the prompt decision for suitable sensor candidates. To this 
end, an elaborated FACS (fluorescence-activated cell sorting)-based strategy was developed for 
the rapid identification of effector-responsive promoters as suitable parts for biosensor design. 
Basically, a library of Escherichia coli promoter-auto-fluorescent protein fusions was screened 
by toggled rounds of positive and negative selection. This approach led to the isolation of the L-
phenylalanine-responsive mtr promoter. The construction of different biosensors based on the mtr 

 on the dynamic range and 
the sensitivity towards effector molecules. Additionally, the mtr biosensor was successfully 
applied to screen a mutant library of E. coli cells for cells with increased L-phenylalanine 
productivity.  

Adaptive laboratory evolution (ALE) has widely been applied to adapt microbes to 
environmental stress or to improve metabolite production. So far, however, the strategy was only 
applicable to fitness-linked phenotypes. To this end, we established biosensor-driven adaptive 
laboratory evolution to evolve inconspicuous product formation. Sensor cells with the highest 
fluorescent output and hence, increased metabolite production, were iteratively isolated by FACS 
and re-cultivated. This strategy was successfully applied to the pyruvate-dehydrogenase deficient 
L-valine producer strain Corynebacterium glutamicum aceE using the Lrp biosensor, which was 
developed for the detection of branched-chain amino acids and methionine. Evolved clones 
featured about 25% increased production and 3-4-fold reduced by-product formation. By genome 
sequencing and the subsequent aceE background, 
decreased L-alanine production was attributed to a mutation in the global regulator GlxR. 
Interestingly, a loss-of-function mutation in the urease accessory protein UreD resulted in about 
100% increased L-valine formation in CGXII minimal medium. Further studies demonstrated 
that urea as part of the cultivation medium imposes a central bottleneck for efficient L-valine 
production: Urea degradation increases the pH by ammonia release, thereby interfering with 
growth and L-valine production. Likewise, carbon dioxide formation stimulates anaplerosis 
leading to a reduced pyruvate pool  the precursor for L-valine production.  
Altogether, these studies emphasize biosensors as valuable and versatile tools to improve 
metabolic cell factories with an enormous potential for future applications. 
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1.2 German Summary 

Im letzten Jahrzehnt hat sich die Anwendung genetisch-kodierter Sensoren als erfolgreich erwiesen, um 
neue und effiziente Strategien für die Entwicklung mikrobieller Zellfabriken zu etablieren. Biosensoren 
vergrößern zum einen das Repertoire an Werkzeugen für die Stammentwicklung und ermöglichen zum 
anderen neuartige Einblicke in Bioprozesse auf Einzelzellebene. Vor allem Biosensoren, die auf 
bakteriellen Transkriptionsregulatoren basieren und so die intrazelluläre Metabolitkonzentration in ein 
messbares Signal übersetzen, spielen aufgrund ihrer vielseitigen Einsatzmöglichkeiten eine große Rolle im 
Metabolic Engineering Bereich.  

Obwohl die Natur eine große Anzahl an Transkriptionsregulatoren hervorgebracht hat, damit Zellen 
intrinsische und extrinsische Signale wahrzunehmen können, gibt es bis heute nur wenige gut untersuchte 
Regulatoren und entsprechende Zielpromotoren. Dies beeinträchtigt allerdings eine schnelle 
Identifizierung neuer Sensorkandidaten. Zu diesem Zweck wurde eine Methode entwickelt, welche auf der 
Fluoreszenz-aktivierten Zellsortierung (FACS) basiert und deren Ziel es ist, schnell neue Promotoren, die 
durch bestimmte Effektoren aktiviert werden, zu identifizieren, um somit neue und geeignete Bausteine 
für die Sensorentwicklung zu gewinnen. Das Grundprinzip besteht darin aus einer Escherichia coli 
Promoter-Sammlung (Promotoren fusioniert an ein autofluoreszierendes Protein) diejenigen Promotoren 
durch abwechselnde Runden positiver und negativer Selektion anzureichern, die durch Effektoren 
aktiviert werden können. Dieser Ansatz führte zur Isolierung des mtr Promoters, der durch Phenylalanin 
aktiviert wird. Die Evaluierung unterschiedlicher mtr-basierter Biosensoren ergab, dass die 
Sensorarchitektur einen signifikanten Einfluss auf den dynamischen Bereich und die Effektormolekül-
Sensitivität hat. Zudem wurden mit Hilfe des mtr Biosensors erfolgreich Zellen mit erhöhter 
intrazellulärer Phenylalaninkonzentration mittels FACS aus eine E. coli Mutantenbibliothek isoliert.  

Im Labor durchgeführte adaptive Evolutionsstrategien werden vielseitig angewendet, um Mikroben 
an Umweltstress anzupassen oder um deren Produktion zu verbessern. Bisher war diese Strategie jedoch 
nur für phänotypische Merkmale geeignet, die direkt an die Fitness des Organismus gekoppelt sind. 
Deshalb haben wir eine Sensor-gesteuerte adaptive Evolutionsmethode entwickelt, um die Produktion 
unscheinbarer Metabolite zu verbessern. Sensorzellen mit dem höchsten Fluoreszenzsignal, was 
gleichzeitig auf eine erhöhte Metabolit-Produktion hindeutet, wurden mehrmals mittels FACS isoliert und 
kultiviert. Diese Methode wurde erfolgreich am Beispiel des Pyruvat-Dehydrogenase-Komplex-
defizienten Valin-Produktionsstammes Corynebacterium glutamicum aceE etabliert. Hier wurde der Lrp 
Biosensor verwendet, der für die Detektion von verzweigtkettigen Aminosäuren und Methionine 
entwickelt wurde. Evolvierte Klone zeigten eine um 25% erhöhte Valin-Produktion und gleichzeitige eine 
drei- bis vierfach reduzierte Nebenproduktbildung. Durch Genomsequenzierung und anschließender 
Evaluierung von einzelnen Mutationen im nicht-evolvierten aceE Stamm wurde gezeigt, dass eine 
Mutation im globalen Regulator GlxR zu einer verringerten Alanin-Produktion führt. Interessanterweise 
führte der mutationsbedingte Funktionsverlust des Urease akzessorischen Proteins UreD bei Kultivierung 
im CGXII Minimalmedium zu einer um 100% erhöhten Valin-Bildung. Weitere Experimente zeigten, 
dass Harnstoff als Bestandteil des Mediums ein zentrales Problem für eine effiziente Valin-Produktion 
darstellt: Durch den Abbau von Harnstoff zu Ammonium steigt der pH-Wert, was das Wachstum positiv, 
aber die Produktion negativ beeinflusst. Ebenso zeigte sich, dass die Bildung von Kohlenstoffdioxid die 
Anaplerose stimuliert, was zu einer reduzierten Pyruvat-Konzentration als Vorstufe der Valin-Biosynthese 
führt.  

Zusammenfassend haben die durchgeführten Experimente gezeigt, dass die Produktion von 
Zellfabriken durch den geschickten und vielseitigen Einsatz von Biosensoren verbessert werden kann. 
Darüber hinaus bieten Sensoren ein enormes Potential für zukünftige Anwendungen. 
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2 INTRODUCTION 

2.1 Microbial cell factories  towards a sustainable bioeconomy 

Since Neolithic times, humans have used microbial fermentation for feed and food refinement 

(Erickson et al., 2012). The awareness of limited fossil resources, untamable industrial waste 

streams and the climate change are currently driving the efforts for the establishment of a 

sustainable bioeconomy. Engineering of microorganisms for the production of value-added 

compounds from renewable feedstocks is one key for the transition from a currently petroleum-

dependent and energy-intensive chemical industry towards a sustainable bioeconomy (Becker 

and Wittmann, 2015; Erickson et al., 2012; Wieschalka et al., 2013). In the last decades, 

microbial processes have been established to build chemical units for the production of a broad 

range of products including solvents, polymers, nutrients, biofuels, bioenergy, flavors and 

pharmaceuticals (Becker and Wittmann, 2015; Woolston et al., 2013). Especially, the market for 

animal feed products has enormously increased. For 2020, the World Economic Forum expects a 

market size of about US$95 billion for products generated by microbial fermentation (Erickson et 

al., 2012).  

Nature has equipped organisms with a plethora of pathways, metabolic reactions and enzymes to 

catalyze the transition of basic carbon sources to complex, high valuable molecules. Superior to 

chemical synthesis, microbial biosynthesis benefits here from chemo-, stereo- and 

regioselectivity of enzymatic reactions, which reduces energy and costs for the intensive 

purification of the desired, enantiopure products (Becker and Wittmann, 2015; Erickson et al., 

2012). Escherichia coli (Chen et al., 2013; Wendisch et al., 2006), Corynebacterium glutamicum 

(Eggeling and Bott, 2015; Heider and Wendisch, 2015; Wieschalka et al., 2013) and 

Saccharomyces cerevisiae (Liu et al., 2013; Nielsen et al., 2013) are traditionally the most 

important workhorses. The deep knowledge of their physiology, aerobic as well as anaerobic 

growth, the availability of a variety of molecular tools and their broad range of metabolic 

products are of great benefit for metabolic engineering purposes (Becker and Wittmann, 2015; 

Woo and Park, 2014).  

In the last decade, next generation sequencing (NGS) techniques, which deliver the detailed 

knowledge of the genetic code in short time and allow in turn for the precise manipulation of the 

genome, revolutionized the field of metabolic engineering. The combination of recombinant 
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DNA technologies, systems and synthetic engineering approaches contributed to this success e.g. 

by allowing for the establishment and transfer of artificial or heterologous pathways in 

production hosts. A broad range of metabolic engineering techniques will be discussed in chapter 

have pushed the transition from an energy-intensive and fossil oil-dependent chemical industry to 

a sustainable bioeconomy based on renewable resources. Now, the challenge is to engineer 

efficient microbial cell factories, which are economically competitive to traditional production 

processes (Becker and Wittmann, 2015; Erickson et al., 2012).  

2.2 Amino acid production using microorganisms 

Amino acids represent essential building blocks for the synthesis of proteins and diverse 

metabolic intermediates (Mitsuhashi, 2014). For commercial applications, the biotechnological 

production of amino acids nowadays superseded the extraction from protein hydrolysates, which 

was not efficient enough for large-scale production (Leuchtenberger et al., 2005). In addition, 

microbial amino acid biosynthesis provides the great advantage of forming the bioactive L-

enantiomer (except for the non-chiral glycine and methionine) in contrast to chemical synthesis 

(Becker and Wittmann, 2012; Bolten et al., 2010). The global amino acid market faces currently 

an annual microbial production volume of more than 5,000,000 tons (Eggeling and Bott, 2015; 

Wendisch, 2014). The main drivers are L-glutamate and the animal feed additives L-lysine, L-

threonine, L-phenylalanine and D-/L-methionine expecting a market size of US$20.4 billion by 

2020 (Global Industry Analysts Inc, 2015). Due to the lack of the respective biosynthesis 

pathways in humans and animals, all nine essential amino acids (L-histidine, L-isoleucine, L-

leucine, L-lysine, L-methionine, L-phenylalanine, L-threonine, L-tryptophan and L-valine) are of 

high interest for the establishment of microbial production processes (Becker and Wittmann, 

2012; Leuchtenberger et al., 2005).  

C. glutamicum and E. coli are the main platform organisms for the production of amino acids 

(Becker and Wittmann, 2012; Becker and Wittmann, 2015; Eggeling and Bott, 2015; 

Leuchtenberger et al., 2005; Mitsuhashi, 2014; Wendisch, 2014). However, both organisms 

reveal pros and cons for the production of specific amino acids: Although E. coli features a 

higher theoretical yield for methionine biosynthesis, for example, C. glutamicum uses a less 

complex regulatory control for the production of the same amino acid (Krömer et al., 2006; 

Mitsuhashi, 2014; Tosaka and Takanami, 1986). Furthermore, C. glutamicum can utilize several 
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carbon sources at the same time, while E. coli features sequential carbon utilization leading to 

diauxic growth phenotypes (Wendisch, 2014). In the following, recent efforts for microbial L-

phenylalanine production by E. coli and L-valine production by C. glutamicum are presented in 

more detail.  

Table 2.2: Selected C. glutamicum and E. coli strains engineered for L-phenylalanine or L-valine 
production.  

Strains Genotype Titer 
(g L-1) 

Comments References 

L-phenylalanine     

E. coli Not indicated in detail 50.0 Fed batch fermentation 
on glucose 

(Backman et 
al., 1990) 

E. coli 
F-4/pF81 

pheA tyrA aroF), 
pJF119EH aroFwt pheAfbr 
aroBwt aroLwt  

38.0 50 g L-1 during in situ 
product recovery (ISPR) 

(Rüffer et al., 
2004) 

C. glutamicum 
KY10865, pKY1 (aroIIfbr, 
csmfbr), pKF1 (aroIIfbr, csmfbr, 
pheAfbr) 

28.0 Jar fermentation on 
sucrose  

(Ikeda and 
Katsumata, 
1992) 

E. coli FUS4.11kan 

pheA tyrA aroF), 
lacIZYA::Ptac- aroFBL, 

pykA::FRT, pykF::FRT-Kan-
FRT 

13.4 
Fed batch fermentation 
on glycerol and 
ammonia 

(Weiner et al., 
2014a) 

L-valine     

C. glutamicum aceE, pJC4-
ilvBNCE 

22.8 Fed batch fermentation 
on glucose and acetate 

(Blombach et 
al., 2007) 

C. glutamicum aceE pyc, 
pgi, pJC4-ilvBNCE 

48.3 Fed batch fermentation 
on glucose and acetate 

(Blombach et 
al., 2008) 

C. glutamicum ATCC13032, aceE A16, 
pqo ppc, pJC4-ilvBNCE 

83.6 Fed batch fermentation 
on glucose 

(Buchholz et 
al., 2013) 

C. glutamicum 
aceE alaT, 

ilvA, pJYW-4-ilvBNC1-lrp1-
brnFE 

51.0 Fed batch fermentation 
on glucose  

(Chen et al., 
2015) 

E. coli 
lacI ilvA, 

pKBRilvBNmutCED, 
pTrc184ygaZHlrp 

60.7 Fed batch fermentation 
on glucose 

(Park et al., 
2011) 

2.2.1 L-phenylalanine production in Escherichia coli  

Metabolic engineering of L-phenylalanine production in E. coli has been promoted for many 

years reaching final titers of up to 50 g L-1 during growth on glucose (Backman et al., 1990; 

Rüffer et al., 2004) and 13.4 g L-1 during growth on glycerol (Weiner et al., 2014a) (Tab. 2.2).  
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Fig. 2.2.1 Schematic of the biosynthesis of L-phenylalanine by E. coli. The precursors 
phosphoenolpyruvate (PEP) and erythrose-4-phosphate (Ery-4-P) for the general biosynthesis of 
aromatic amino acids are provided directly by glycolysis or via the pentose phosphate pathway 
(PPP). PEP and Ery-4-P are condensed to 3-deoxy-D-arabino-heptulosonate 7-phosphate 
(DAHP) by one of the three DAHP synthases AroF, AroG or AroH, which indicates the start 
point of the shikimate pathway. Via several enzymatic steps, the formation of chorismate is 
catalyzed, which is the shared precursor of all three aromatic amino acids. L-phenylalanine is 
produced from chorismate via prephenic acid catalyzed by prephenate dehydratase. 
Abbreviations: tricarboxylic acid cycle (TCA), 5-enolpyruvoylshikimate 3-phosphate (EPSP). 
Dashed lines indicate the existence of intermediate steps that are not depicted in the figure.  

Besides its important role as precursor for the artificial sweetener aspartame or as building block 

for pharmaceutical products (Sprenger, 2006; Sprenger, 2007), L-phenylalanine became likewise 

interesting as precursor for various aromatic compounds including pinosylvin, cinnamic and p-

hydroxycinnamic acid used as flavor enhancer or ingredients of cosmetics (Sariaslani, 2007; van 

Summeren-Wesenhagen and Marienhagen, 2015; Vargas-Tah et al., 2015). For engineering an 

efficient L-phenylalanine microbial cell factory, E. coli was used as primary workhorse due to its 

rapid growth, the availability of genetic engineering tools and the well-studied biosynthetic 

pathway (Backman et al., 1990; Pittard et al., 2005). Recently, efforts were also taken in C. 

glutamicum to push L-phenylalanine production (Zhang et al., 2014a; Zhang et al., 2015a; Zhang 

et al., 2013). Both organisms produce aromatic amino acids via the shikimate pathway 
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(Fig. 2.2.1), however, with differences in some involved enzymes (Sprenger, 2006). Key targets 

during engineering of E. coli strains for L-phenylalanine production are i) the generation of 

feedback-insensitive versions of the 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) 

synthases AroF, AroG, AroH and chorismate mutase/prephenate dehydratase PheA, ii) the 

improvement of the supply with the precursors phosphoenolpyruvate (PEP) and erythrose-4-

phosphate, and iii) the overproduction of enzymes catalyzing rate limiting steps like the 

shikimate synthase AroL (Bongaerts et al., 2001; Ikeda, 2006; Sprenger, 2007). Although high L-

phenylalanine titers have already been reached during growth on glucose, alternative carbon 

sources are in demand. For example, glycerol as by-product of biodiesel production may reduce 

costs and meets the requirements of a sustainable bioeconomy (Weiner et al., 2014a). The 

negative impact on growth upon high L-phenylalanine concentrations, the delivery of precursors 

or the central metabolism are still bottlenecks, which need to be addressed during engineering of 

production strains (Polen et al., 2005; Weiner et al., 2014b).  

2.2.2 L-valine production in Corynebacterium glutamicum 

The biosynthesis pathway of L-valine branches from the glycolytic product pyruvate (Fig. 2.2.2). 

Hence, the pivotal points for increased L-valine production are the availability of the precursor 

pyruvate and the overproduction of the L-valine biosynthesis pathway, which have been 

addressed during engineering L-valine producer strains (Tab. 2.2). To reach high concentrations 

of pyruvate in C. glutamicum, the deletion of aceE encoding the E1p subunit of the pyruvate 

dehydrogenase complex (PDHC) became a central target to inhibit the degradation of pyruvate to 

acetyl-CoA (Blombach et al., 2007; Schreiner et al., 2005). The drawback of these strains, 

however, is the growth-decoupled production phenotype. Due to the deficiency of PDHC activity, 

acetate has to be added to the medium to maintain the acetyl-CoA level for fueling the 

tricarboxylic acid (TCA) cycle for growth. The presence of acetate, however, abolishes 

phosphoenolpyruvate:sugar phosphotransferase system (PTS)-mediated glucose uptake via the 

regulator sugR required for L-valine production (Blombach et al., 2009; Engels and Wendisch, 

2007). Upon depletion of acetate, L-valine is produced. During fed-batch fermentation, the 

aceE strain produced up to 22.8 g L-1 L-valine (YP/S 0.39 mol L-valine per mol glucose) 

(Blombach et al., 2007). Based on this strain, the deletion of the pyruvate:quinone oxidoreductase 

( pqo), which inhibits the degradation of pyruvate to acetate, and the deletion of the 

phosphoglucose isomerase ( pgi), which pushes carbon flux through the pentose-phosphate  
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pathway (PPP) to enhance the NADPH availability, resulted in final L-valine titers of up to 

48.3 g L-1 (YP/S 0.75 mol L-valine per mol glucose). The additional deletion of the pyruvate 

carboxylase (pyc) preventing the efflux of the precursor pyruvate into the TCA cycle via 

anaplerosis further enhanced YP/S to 0.86 mol L-valine per mol glucose (Blombach et al., 2008; 

Eikmanns and Blombach, 2014). For large-scale industrial production, however, growth-

decoupled and auxotrophic phenotypes as well as the cultivation on two carbon sources are costly 

and laborious. To this end, Buchholz and co-workers reduced the expression of aceE by promoter 

engineering, which allows growth on glucose as single carbon source and resulted in a final L-

valine titer of 83.6 g L-1 (Buchholz et al., 2013). Alternative approaches for increasing L-valine 

production relied on i) the additional deletion of by-product synthesis routes (e.g. L-alanine and 

L-isoleucine), ii) the overexpression of the branched-chain amino acid exporter BrnFE and the 

transcriptional regulator Lrp or iii) on the inactivation of D-pantothenate synthesis to limit CoA 

availability for PDHC activity (Chen et al., 2015; Radmacher et al., 2002). Biomass formation, 

NADPH availability, improved bioprocesses or alternative carbon sources provide certainly 

targets for increasing L-valine production. 

2.3 Metabolic engineering of microbial factories 

Microbes are equipped with a plethora of enzymes and metabolic pathways, which enable the 

conversion of simple carbon sources into highly complex, value-added compounds (Becker and 

Wittmann, 2015). The natural metabolic activity, however, is stringently controlled and reduced 

to a minimal level primarily aiming for proliferation and maintenance. For this reason, the 

Fig. 2.2.2 Schematic of the biosynthesis of 
L-valine in C. glutamicum. The biosynthesis 
pathway branches from pyruvate via 
enzymatic steps catalyzed by acetohydroxy 
acid synthase (AHAS), acetohydroxy acid 
isomeroreductase (AHAIR), dihydroxy acid 
dehydratase (DHAD) and transaminase B 
(TA). Abbreviations: acetate kinase (AK), 
alanine aminotransferase (AlaT and AvtA), 
pyruvate dehydrogenase complex (PDHC), 
pyruvate kinase (PK), phosphoenolpyruvate 
(PEP), pyruvate:quinone oxidoreductase 
(PQO), phosphotransacetylase (PTA).
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metabolic flux towards product formation is traditionally not maximized to save resources and 

energy. Although microbial refinement of food and drinks unconsciously accompanied mankind 

for several thousands of years, the awareness that living organisms are responsible for e.g. lactic 

acid fermentation discovered by Pasteur in 1857 (Pasteur, 1857), ushered the era of targeted 

microbial applications.  

The first techniques to engineer microbes incorporated the iterative exposition to chemical 

mutagens or ultraviolet (UV) radiation, which generated random mutations throughout the entire 

genome (Benigni et al., 1992; Ghribi et al., 2004; Harper and Lee, 2012; Hughes et al., 2012). 

These mutant libraries were screened for clones with the desired phenotype (Ghribi et al., 2004; 

Ohnishi et al., 2008). Throughout iterative rounds of mutagenesis, however, several thousand 

mutations accumulated in the genome including beneficial, non-profitable and silent mutations. 

Although the resulting strains produced increased amounts of the particular target metabolites, 

the numerous mutations significantly affected the fitness of the cells, which led to slow growth, 

low stress tolerance and decreased robustness during bioprocesses (Becker and Wittmann, 2015).  

During the last two decades, the increasing knowledge of bacterial physiology, the availability of 

sequence data as well as the development of recombinant DNA technologies has enabled the 

targeted deletion and overexpression of endogenous genes as well as the introduction of 

heterologous sequences (Erickson et al., 2012; Heider and Wendisch, 2015; Wendisch, 2014; 

Woolston et al., 2013). This rational design concept realizes the local engineering of metabolic 

pathways with a defined genetic background. Nevertheless, the comprehensive engineering of the 

complex network of metabolic interactions including efficient co-factor and energy supply as 

well as potential metabolic bottlenecks requires a deeper knowledge of the microbial physiology 

(Becker and Wittmann, 2015). Here, systemic analysis provides a novel global and quantitative 

insight into the microbial cell. Comprehensive Omics datasets including valuable quantitative 

information on genes (genomics), transcripts (transcriptomics), proteins (proteomics), metabolites 

(metabolomics) and pathway fluxes (fluxomics) provide a powerful basis for the development of 

mechanisms to control dynamic gene expression, to identify metabolic bottlenecks or to redirect 

metabolic fluxes (Becker and Wittmann, 2015; Furusawa et al., 2013; Petzold et al., 2015; 

Woolston et al., 2013). These strategies allow for the system-wide engineering of microbial cell 

factories. Based on data of multiomic platforms, in silico models can be derived supporting the 

simulation of optimal metabolic fluxes through pathways for high yields  which is, however, 
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still in the early stages of development (Becker and Wittmann, 2015; Kim et al., 2015; Wiechert 

and Noack, 2011).  

Synthetic biology incorporates the full spectrum of genetic engineering possibilities to design cell 

factories with novel features that have never existed before (Church et al., 2014; Way et al., 

2014). Novel synthetic strategies can accelerate the development and commercialization of 

microbial cell factories by overcoming natural barriers such as gene expression noise, metabolic 

by-products, crosstalk or broad enzyme activities (Church et al., 2014; Erickson et al., 2012). To 

this end, a broad range of innovative tools has been developed including CRISPR-Cas9 mediated 

genome editing and multiplex-automated genome engineering (MAGE) of natural and artificial 

genomes (Bonde et al., 2014; Jakociunas et al., 2015; Li et al., 2015; Liu and Jiang, 2015; Ronda 

et al., 2015; Wang et al., 2009), oscillators and genetic switches for the dynamic regulation of 

gene expression cascades (Church et al., 2014; Liu et al., 2015b; Zhang et al., 2012), optogenetic 

tools (Binder et al., 2014; Möglich and Hegemann, 2013), and non-invasive quantification of 

intracellular activities e.g. by biosensors based on native or synthetic transcriptional regulators 

(Chou and Keasling, 2013; Mahr and Frunzke, 2016; Ng et al., 2015; Tang et al., 2008; Woo and 

Park, 2014).  

Although systemic analysis provides a global and comprehensive view of the metabolic 

landscape, the high complexity of carbon and energy fluxes has nowadays not been completely 

understood. There are still many obscured factors including unknown gene activities, regulatory 

mechanisms or detailed knowledge of certain metabolic pathways. During the last years, adaptive 

laboratory evolution approaches driven by mutation and selection have drawn the attention for 

engineering biotechnological interesting strains (Abatemarco et al., 2013; Portnoy et al., 2011; 

Schmidt-Dannert and Arnold, 1999): By iteratively exposing industrial producer strains to 

sequentially increasing levels of environmental stress, microbial strains were adapted to e.g. 

oxidative or thermal stress (Lee et al., 2013; Oide et al., 2015; Sandberg et al., 2014; Tenaillon et 

al., 2012). Further approaches aimed to improve product formation (Mahr et al., 2015; Raman et 

al., 2014; Reyes et al., 2014; Xie et al., 2015) or the tolerance towards solvents (Atsumi et al., 

2010; Lee et al., 2011; Oide et al., 2015). Most strategies are based on the emergence of natural 

mutations and the improvement of fitness-linked phenotypes, which are directly exposed to a 

natural selective pressure. Anyway, an adaptive laboratory evolution approach for inconspicuous 
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product formation not necessary linked to fitness would beneficially expand the toolbox of 

metabolic engineering. 

Another strategy for the comprehensive engineering of microorganisms is the application of 

random genomic mutagenesis, which was reinvigorated by the establishment of efficient 

screening systems based on genetically-encoded biosensors (Delvigne et al., 2015; Dietrich et al., 

2010; Eggeling et al., 2015; Mahr and Frunzke, 2016; Schallmey et al., 2014; Zhang et al., 

2015b). Due to decreasing prices of genome sequencing by NGS, mutations occurring during 

adaptive evolution as well as during biosensor-driven selection of mutant libraries can easily be 

assessed by comparative sequence analysis (Becker and Wittmann, 2015; Harper et al., 2011). 

These strategies revealed to deliver novel, non-intuitive targets for the establishment and 

improvement of industrial production strains.  

2.4 Genetically-encoded biosensors 

Engineering microbes for large-scale production demands efficient tools for the high-throughput 

(HT) development of novel cell factories as well as approaches for the evaluation of the 

bioprocess performance. Techniques for single cell analysis, for instance, are required to discover 

the formation of inefficient subpopulations, which might have a negative impact on the outcome 

and robustness of bioprocesses (Delvigne and Goffin, 2014; Lieder et al., 2014). Moreover, the 

screening of vast strain libraries generated by random or transposon mutagenesis presents a HT 

strategy to identify novel targets for rational engineering approaches. Cases where product 

formation is directly linked to an easily selectable phenotype, e.g. carotenoid production (An et 

al., 1991; Ukibe et al., 2008), or the formation of a chromophore as consequence of an enzyme 

reaction may interface with the development of efficient HT approaches (Santos and 

Stephanopoulos, 2008). However, the majority of biotech-relevant compounds are inconspicuous 

small molecules, which do confer a selectable phenotype to the cell, remains laborious without an 

efficient HT screening tool (Dietrich et al., 2010; Mahr and Frunzke, 2016; Zhang et al., 2015b). 

Here, the development of genetically-encoded biosensors converting the intracellular metabolite 

concentration into a measureable, optical output is of high value for diverse biotechnological 

applications.  

Organisms have evolved a broad repertoire of different mechanisms to sense and respond to 

environmental stimuli including stress, gases, temperature, pH, ions or the availability of 
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nutrients, in order to control gene expression. This spectrum of natural sensor devices comprising 

RNA aptamer structures in riboswitches, transcriptional regulators and enzymes provides a 

valuable repertoire for the construction of biosensors for intracellular metabolite detection.  

 

 

Fig. 2.4 Schematic of biosensors based on A. RNA aptamers, B. FRET and C. transcription 
factors. The biosensors are shown in their OFF (left) and ON state (right) upon binding of 
metabolites (red). Abbreviation: ribosome binding site (RBS), cyan (CFP) and yellow fluorescent 
protein (YFP), Förster (fluorescence) resonance energy transfer (FRET).  
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2.4.1 RNA aptamer-based biosensors 

Riboswitches are non-translated RNA elements, which change their three-dimensional RNA 

aptamer structure upon binding of effector metabolites triggering the efficiency of the gene 

expression machinery, RNA stability or the enzymatic activity of RNA molecules  termed 

ribozymes (Fig. 2.4) (Aboul-Ela et al., 2015; Michener et al., 2012; Serganov and Nudler, 2013). 

The immense power of riboswitch structures regulating gene expression was first described for 

the response to thiamine pyrophosphate (Winkler et al., 2002a), flavin mononucleotide (Winkler 

et al., 2002b) and coenzyme B12 (Nahvi et al., 2002). Nowadays, a wide range of natural 

metabolite-binding RNAs were identified with the help of algorithms e.g. Riboswitch Finder 

(http://riboswitch.bioapps.biozentrum.uni-wuerzburg.de/server.html (Bengert and Dandekar, 

2004)) or Riboswitch Explorer (http://132.248.32.45:8080/cgi-bin/ribex.cgi (Abreu-Goodger and 

Merino, 2005)) and archived in different databases including the Aptamer Base 

(http://aptamerbase.semanticscience.org/ (Cruz-Toledo et al., 2012)). Furthermore, the synthetic 

architecture by computational methods or methods like the SELEX (systematic evolution of 

ligands by exponential enrichment) in vitro assembly technique theoretically allows engineering 

of RNA aptamers for the detection of any desired metabolite (Beisel and Smolke, 2009; Ellington 

and Szostak, 1990). Frequently, the synthetic in vitro or in silico selection of RNA aptamers 

revealed rather low compatibility with in vivo systems (Kopniczky et al., 2015; Liang et al., 2011; 

Schallmey et al., 2014). Alternative approaches rely on the step-wise modification of existing 

RNA aptamers e.g. to alter the specificity (Mannironi et al., 2000). In the last years, RNA 

aptamer-based biosensors have been constructed for visualization of intracellular xanthine (Win 

and Smolke, 2007), for screening a library of mutated caffeine demethylases (Michener and 

Smolke, 2012), as Riboselector for the evolution of L-lysine or L-tryptophan production by the 

fusion of the RNA-aptamer to a selectable marker gene (Jang et al., 2015; Yang et al., 2013), or 

for the control of lysine transport in C. glutamicum (Zhou and Zeng, 2015). Furthermore, Paige 

and co-workers connected metabolite-binding aptamers to fluorophore-binding aptamers for 

sensing S- -diphosphate (Paige et al., 2012). Recently, this 

type of sensor was shown to be applicable to study metabolite dynamics at the single cell level 

(You et al., 2015). The great advantage of RNA-based biosensors is certainly the save of energy 

and resources as well as the quick response to transient changes during bacterial growth as they 

do not require, for instance, the pre-existence of a transcription regulator (Kopniczky et al., 

2015).  
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2.4.2 FRET-based biosensors 

Another strategy to measure intracellular molecule concentrations is based on Förster 

(fluorescence) resonance energy transfer (FRET) between two auto-fluorescent proteins (AFPs) 

(Fig. 2.4). In principle, the excitation energy of an AFP with short wavelength (FRET donor) can 

be transferred in a radiation-free way to an AFP of high wavelength (FRET acceptor), if both 

AFPs are in close proximity (<10 nm) and the excitation spectrum of the FRET acceptor overlaps 

with the emission spectrum of the FRET donor. Both AFPs are linked by a sensory domain, 

which undergoes a conformational change upon metabolite binding (Constantinou and Polizzi, 

2013; Frommer et al., 2009; Michener et al., 2012; Schallmey et al., 2014). Thereupon, both 

AFPs change their position relatively to each other either inducing or inhibiting FRET. The ratio 

of the intensity of emitted fluorescence of FRET acceptor and donor even allows the quantitative 

estimation of the metabolite concentration, which presents one great advantage of this biosensor 

type (Constantinou and Polizzi, 2013; Frommer et al., 2009). During the last decade, a broad 

range of FRET-based biosensors has been constructed for sensing sugars (Behjousiar et al., 2012; 

Bermejo et al., 2011), amino acids (Behjousiar et al., 2012; Gruenwald et al., 2012; Okada et al., 

2009), ions (Hessels and Merkx, 2015), redox states (Yano et al., 2010), hydrogen peroxide 

(Bilan et al., 2013) or oxygen (Potzkei et al., 2012). Helpful platforms for the construction of 

FRET sensors are the Protein Data Bank (PDB; http://www.rcsb.org/pdb/home/home.do (Berman 

et al., 2000)) or the FRETView software (http://turroserver.chem.columbia 

.edu/fretview/index.html (Stevens et al., 2007)). Although the amount of functional FRET-based 

biosensors promises a high success rate, the low predictability of conformational change of the 

sensory domain upon metabolite-binding and the resulting change of the FRET ratio render 

design efforts rather empirical (Constantinou and Polizzi, 2013; Frommer et al., 2009). 

Furthermore, the pH, ionic strength, temperature, buffer salts and other metabolites can impact 

the FRET ratio, which have to be considered using this sensor type for quantitative measurements 

(Moussa et al., 2014; Okumoto et al., 2012). In the last years, FRET-based biosensors have been 

used to study fundamental questions based on intracellular metabolite concentrations of 

mammalian, plant or microbial cells (Michener et al., 2012). In addition, they are proposed to be 

of high value for monitoring biotechnological processes due to their short signal response time 

(Constantinou and Polizzi, 2013). However, no application during HT strain development has 

been reported so far. Although binding affinities might be engineered, existing FRET-based 
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biosensors are highly sensitive and respond mainly to changes in the nM or μM scale, which 

render these sensors unfeasible for metabolic engineering approaches. 

2.4.3 Transcription factor-based biosensors 

The allosteric control of transcriptional regulators provides a highly interesting mechanism for 

metabolite detection, which has widely been exploited for the construction of genetically-

encoded biosensors (Mahr and Frunzke, 2016; Schallmey et al., 2014; Zhang et al., 2015b). 

Metabolite-responsive transcription factors (TFs) change their conformation upon effector 

binding, which in turn leads to their attachment to the TF-binding site recruiting the RNA 

polymerase for transcription initiation (Fig. 2.4). Beside small molecule recognition, 

transcriptional regulators have also been reported to control gene expression in response to ions, 

physical parameters (temperature, pH), protein-protein interactions or protein modifications 

(Mahr and Frunzke, 2016). For microorganisms, global databases like DBD 

(www.transcriptionfactor.org (Wilson et al., 2008)) as well as species-specific platforms such as 

CMRegNet (http://www.lgcm.icb.ufmg.br/cmregnet/ (Abreu et al., 2015)) for corynebacterial and 

mycobacterial species exist, which summarize the broad landscape of transcriptional regulators in 

bacteria and contribute valuable details for the construction of TF-based biosensors (Mahr and 

Frunzke, 2016).  

Transcriptional regulator-based biosensors were first successfully developed for the detection of 

toxic chemicals or ions as environmental pollutants (Fernandez-Lopez et al., 2015; Merulla et al., 

2013; van der Meer and Belkin, 2010). In the last years, their broad applicability was also used to 

study dynamics in bacterial cells at the single cell level (Kiviet et al., 2014; Mustafi et al., 2014) 

or for diverse biotechnological applications (Liu et al., 2015a; Mahr and Frunzke, 2016; 

Schallmey et al., 2014; Zhang et al., 2015b). By linking the metabolite-responsive TF-promoter 

pair to an easy screenable (e.g. fluorescence) or selectable (e.g. antibiotic or auxotrophic marker) 

phenotype, HT strain development based on genome-wide random or transposon mutagenesis has 

become feasible and effective for the isolation of cells with an increased intracellular metabolite 

concentration. This strategy was successfully applied to improve the production of succinate 

(Dietrich et al., 2013), branched-chain amino acids (Mustafi et al., 2012), L-lysine (Binder et al., 

2012), butanol as well as linear and branched-chain alcohols (Dietrich et al., 2013), benzoic acids 

(van Sint Fiet et al., 2006) or ß-ketoadipate (Dietrich et al., 2013). Furthermore, TF-based 

biosensors are also of high interest to screen enzyme libraries for desired characteristics 
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(Schendzielorz et al., 2014; Siedler et al., 2014a; Siedler et al., 2014b; Uchiyama and Miyazaki, 

2010a). Applied in synthetic regulatory circuits, transcriptional regulators proved to be effective 

tools for the dynamical control and balance of metabolic fluxes for improved product formation. 

This strategy was efficiently implemented to regulate acyl-CoA and ethanol biosynthesis for the 

enhanced production of fatty acid ethyl ester (Zhang et al., 2012) or to improve malonyl-CoA 

levels for malonyl-CoA derived products (Liu et al., 2015b; Xu et al., 2014). The broad 

applicability of transcriptional regulator-based biosensors features the great success of these 

valuable sensor devices. However, the low number of well-characterized TF-promoter pairs, the 

low orthogonality of sensor constructs, the inappropriate characteristics of the biosensor in terms 

of specificity, sensitivity or dynamic range as well as the requirement to sense non-native and 

non-natural products requires improvement. 

2.5 Aims of this work 

Although nature provides a diversity of transcriptional regulator-promoter pairs available for the 

construction of biosensors, the identification of suitable candidates for the detection of desired 

metabolites often turns out to be laborious and time-consuming. For this reason, one aim of this 

work is the development of an efficient HT strategy to screen promoter libraries for appropriate 

sensor devices. Based on the Alon library, which consists of more than 2000 different 

Escherichia coli promoter-gfpmut2 fusions and hence, readily available sensor devices, a 

workflow will be developed using fluorescent-activated cell sorting (FACS) to screen for 

galactose and L-phenylalanine-responsive promoters, which might be used for the development 

of biosensors. In the following, selected candidates will be chosen in order to study the influence 

different sensor constructs will be performed. Finally, identified L-phenylalanine-responsive 

biosensors shall be tested for applicability during FACS HT screening of L-phenylalanine 

producers after random mutagenesis of E. coli strains.  

Adaptive laboratory evolution (ALE) is an interesting opportunity for the biotechnological 

improvement of production strains to identify novel and non-intuitive mutations by selecting at 

the same time against detrimental mutations. So far, however, ALE has only been applied to easy 

selectable or fitness-linked phenotypes. For this reason, another aim of this work will be the 

establishment of a biosensor-driven adaptive evolution strategy for improving the production of 

metabolites not linked to a directly selectable phenotype e.g. amino acids. The novel approach 
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will be tested using the Lrp biosensor to improve e.g. L-valine production. By iteratively 

imposing an artificial selective pressure on cells with a high sensor output using FACS, clones 

with intracellularly increased L-valine levels shall be enriched. Evolved clones will 

comparatively be analyzed and mutations revealed by whole genome sequencing will then be re-

introduced into the non-evolved strain to identify whether they are beneficial for L-valine 

production. This strategy will also be examined for the production of other biotechnological 

interesting metabolites.  

The application of biosensors for monitoring metabolite production at the single cell level can 

reveal interesting dynamics as well as inefficient subpopulations. In live cell imaging studies, the 

Lrp biosensor will be applied to investigate single cell growth and production of C. glutamicum 

aceE. 
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3 RESULTS 

The overall topic of this PhD thesis was the development of transcriptional regulator-based 

biosensors for biotechnological interesting applications. The results were summarized in two 

published papers, one submitted manuscript and one manuscript that will be submitted in the near 

future. Furthermore, recent efforts in this research field were summarized in two scientific 

reviews.  

In a first study, the recently developed Lrp biosensor for the visualization of intracellular 

methionine and branched-chain amino acids was applied to monitor single-cell metabolite 

production of the L-valine producer strain C. glutamicum aceE and gradually engineered 

derivatives. pplication of a genetically encoded biosensor for live cell imaging 

of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium 

glutamicum the detection of cell-to-cell variations using the Lrp biosensor, 

which may occur during bioprocesses. Interestingly, live cell imaging analyses in microfluidic 

chip devices revealed the formation of different types of non-producing cells as well as the 

formation of subpopulations in the presence of low amounts of complex medium compounds.  

Adaptive laboratory evolution (ALE) has widely been applied to improve diverse characteristics 

-driven adaptive laboratory evolution of L-

valine production in Corynebacterium glutamicum  biosensor 

to improve growth and L-valine production of C. glutamicum aceE by iteratively cultivating 

and selecting cells with the highest fluorescent output using FACS. This strategy proved likewise 

successful to reduce by-product formation. Out of seven emerged mutations, four were 

reintroduced as single mutations into the non-evolved aceE strain and were revealed to increase 

L-valine production or to reduce by-product formation.  

During the biosensor-driven adaptive evolution, one mutation (ureD-E188*) arose leading to the 

formation of a truncated UreD protein, which was revealed to significantly increase L-valine 

production by about 100%. In previous studies, the lack of the essential accessory protein UreD 

was described to inactivate urease leading to reduced levels of the urea degradation products 

carbon dioxide and ammonia. -valine production in 

Corynebacterium glutamicum combination of gene deletion studies, batch 

fermentation with CO2 aeration and pH shifts, as well as DNA microarray analysis, which 
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revealed the pH-dependency of growth and production, and the impairment of anaplerosis under 

reduced CO2/HCO3
- levels increasing the pyruvate supply for L-valine production.  

The natural abundance of transcriptional regulator sensing metabolites often overwhelms the 

decision of suitable biosensor candidates. To this end, we developed a HT strategy for the fast 

and easy detection of novel sensors

Escherichia coli The approach is based on the 

pooled Alon library consisting of about 2000 different E. coli promoter-gfpmut2 fusions and 

hence, readily available sensor devices. By toggled rounds of positive and negative selection 

using FACS, galactose and phenylalanine-responsive promoters were successfully enriched. 

Based on the enriched phenylalanine-responsive promoter of mtr, different biosensor 

architectures were constructed and characterized. One mtr biosensor was successfully applied for 

FACS HT screening of a randomly mutagenized E. coli MG1655 library for phenylalanine 

producing strains.  

Throughout the last years, the development and application of transcription-factor-based 

biosensors has widely expanded for biotechnological applications

factor- , the recent process 

in this research field is summarized. The review provides a detailed overview of biosensors 

applied in biotechnological strain development and screening approaches. Furthermore, current 

efforts in the fields of high-throughput screening, dynamic pathway control by regulatory 

circuits, biosensor-driven adaptive evolution or single-cell analysis are highlighted. In addition, 

the review describes a broad range of recent studies, which deal with the engineering of 

biosensors for altered specificities and dynamic ranges, improved or reduced sensitivity as well 

as achieved orthogonality. Finally, the review emphasizes the integration of Omics and NGS 

techniques to expand the possibilities for biosensor development and future applications.  
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4 DISCUSSION 

4.1  Biosensors  valuable tools for biotechnology 

4.1.1  

Microorganisms possess a plethora of natural sensor devices (e.g. transcriptional regulators, 

riboswitches or enzymes) for sensing the broad range of intrinsic and extrinsic stimuli. This 

ability allows for a quick adaption to the changing availability of nutrients and other cellular 

requirements, or to altered physical and environmental conditions. The principle of sensing 

metabolites by transcriptional regulators has been proven to be of high value for a variety of 

biotechnological applications including the visualization of inconspicuous metabolites during 

bioprocesses, the control of biosynthetic pathways as regulatory circuits, and the development of 

production strains (Liu et al., 2015a; Mahr and Frunzke, 2016; Zhang et al., 2015b). To date, 

however, only a few regulators and their corresponding target promoters have been well 

characterized, which constitutes an important prerequisite to choose a suitable sensor candidate 

for the desired application. Hence, efficient strategies are in demand for the fast identification of 

appropriate effector-responsive transcriptional regulators and target promoters. To this end, an 

elaborated FACS-based workflow was developed in this study to screen libraries of promoters 

fused to genes encoding auto-fluorescent proteins (chapter 3.4). The Alon library consisting of 

about 2000 different promoter-gfpmut2 fusions in E. coli presents a valuable tool with readily 

available sensor devices (Zaslaver et al., 2006). Using FACS, metabolite-responsive promoters 

were enriched from the pooled library by toggled rounds of positive and negative selection. This 

novel strategy was successfully applied to screen for galactose- and L-phenylalanine-responsive 

promoter-gfpmut2 fusions.  

(Schmidt-Dannert and Arnold, 1999), 

the efficient screening for metabolite-responsive promoters by FACS requires a well-considered 

protocol. Here, the eventual application of the biosensor plays an important role: Due to the 

diverse underlying dynamics of gene regulatory mechanisms in response to effector molecules, 

the time point for sorting of cells as well as the composition of the cultivation medium may 

strongly impact the outcome of the screening process. Furthermore, the choice of the sorting gate 

may decide about the characteristics of the enriched promoters in terms of background activity 

and the dynamic range. Beyond that, the toggled rounds of positive and negative selection turned 
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out to be efficient to get rid of constitutively active promoters of e.g. house-keeping genes. 

Likewise, this FACS-based strategy is proposed to enable screening for transcriptional repressors 

by inverting the toggled rounds of selection.  

Besides FACS, automated robotic platforms allow for the HT screening of strain libraries clone 

by clone to identify variants with the desired phenotype or function. Screening clone by clone 

avoids on the one hand the loss of appropriate strains, which is more probable during FACS 

screening. One the other hand, the high screening capacity of about 80.000 cells per second and 

the potential to sort 10.000 cells within the same time argue strongly for the application of FACS 

reducing likewise costs and time (Dietrich et al., 2010). Furthermore, the outcome of screening 

promoter libraries depends strongly on the pre-adjusted conditions (e.g. medium, time, etc.). 

Here, FACS allows for the fast and easy screening of libraries under different conditions within a 

few minutes in contrast to screening clone by clone. One limitation of the FACS-based strategy is 

the availability of a suitable and easily accessible library of promoter fusions. Considering 

biotechnological applications, appropriate and comprehensive collections exist for the 

biotechnological interesting microbes E. coli (Zaslaver et al., 2006) and S. cerevisiae (Newman et 

al., 2006). Nevertheless, the decreasing costs of gene synthesis and robot-based production lines 

allow for the generation of such libraries in a manageable manner. Furthermore, the integration of 

promoter libraries in different organisms might also enable the screening for orthogonal sensor 

devices.  

A similar strategy was developed by Uchiyama and co-workers in order to identify catabolic 

genes from environmental metagenomes (Uchiyama and Miyazaki, 2010b; Uchiyama and 

Watanabe, 2008). By fusing fragments of a metagenomic library to a reporter gene (e.g. gfp) in 

an operon-trap vector, HT screening for metabolically-relevant fragments using FACS became 

possible. This strategy might likewise be exploited to screen metagenomic libraries for effector-

responsive transcriptional regulator-promoter pairs. Furthermore, comparative transcriptome 

analysis like DNA microarrays or RNA sequencing may also contribute to the identification of, 

so far, uncharacterized metabolite-responsive genes, of which the regulatory mechanism might be 

exploited as biosensor devices (Dahl et al., 2013; Mahr and Frunzke, 2016).  
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4.1.2 The application of biosensors for single cell studies 

Besides their valuable application for metabolic engineering purposes, genetically-encoded 

biosensors are excellent tools to visualize the development of cell-to-cell heterogeneity e.g. in 

bioprocesses (Delvigne et al., 2009; Mustafi et al., 2014; Vasdekis and Stephanopoulos, 2015). 

Typically, the development of phenotypic pattern such as inefficient subpopulations, which may 

affect the performance and stability of bioprocesses, is neglected by the use of bulk analyses 

(Delvigne and Goffin, 2014; Delvigne et al., 2014; Müller et al., 2010). In this study, the Lrp 

biosensor was applied to study phenotypic pattern of the L-valine producer C. glutamicum aceE 

and derivatives by live cell imaging (chapter 3.1, (Mustafi et al., 2014)). In contrast to large-scale 

cultivations, 2D microfluidic chip devices offer the great advantage to analyze single cells in a 

monolayer with high spatial and temporal resolution and enable likewise the cultivation at 

environmental constant and defined conditions (Grünberger et al., 2012; Grünberger et al., 2014). 

Interestingly, the analysis of the growth-decoupled L-valine producer strain aceE and 

derivatives revealed the formation of non-producing subpopulations in the production phase upon 

addition of small amounts of complex medium compounds as often used during production 

processes. While most cells switched from growth to production (depicted by the fluorescent 

signal of the biosensor), single cells continued growing and/or switched to production at a later 

time point (Fig. 5 in chapter 3.1, (Mustafi et al., 2014)). A similar phenotypic pattern of 

fluorescent and non-fluorescent sensor aceE cells was observed during flow cytometric analysis 

of shake flask cultures (data not shown). Although the origin for phenotypic heterogeneity was 

ascribed to the used complex medium compounds, the responsible triggers as well as the 

underlying physiological and molecular basis remain unknown due to the lack of readily 

available single cell analysis tools interfacing with FACS or microfluidics.  

So far, different staining techniques interfacing with FACS proved efficient to discriminate 

between living, lysed or dead cells, or may detect variations in the DNA content or membrane 

potential of cellular populations (Langemann et al., 2016; Neumeyer et al., 2013). Furthermore, 

workflows have been established to analyze the proteome of FACS-isolated subpopulations by 

mass spectrometry (Jahn et al., 2013; Jehmlich et al., 2010). Even mass-spectrometric 

measurements of various metabolites in single cells are nowadays possible (Amantonico et al., 

2008; Heinemann and Zenobi, 2011; Rubakhin et al., 2013). In the future, the interplay of 

biosensors with next generation sequencing techniques (e.g. RNA-seq) and high-resolution 
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proteomics or metabolomics might provide novel and profitable insights into the formation of 

subpopulation.  

4.1.3 Limitations of transcriptional regulator-based biosensors 

Within recent years, biosensors based on transcriptional regulators have proven to be of great 

benefit for the establishment of efficient microbial cell factories by improving production strains 

or by identifying inefficient subpopulations in bioprocesses (Binder et al., 2012; Chou and 

Keasling, 2013; Delvigne et al., 2009; Dietrich et al., 2013; Mahr et al., 2015; Mustafi et al., 

2012; Mustafi et al., 2014; Zhang et al., 2012). The drawbacks and limits of genetically-encoded 

biosensors, however, are often neglected during application, but have to be considered for the 

correct interpretation of the obtained results.  

The mechanism of transcriptional regulators to transfer the intracellular presence of effector 

metabolites into the expression of target genes is based on a complex hierarchy of molecular 

interactions and biochemical reactions. This includes metabolite sensing, transcriptional and 

translational processes, and the interference between different regulatory networks. In E. coli, 

transcription typically runs with a speed of 40-80 base pairs per second, while translation 

proceeds at about 20 amino acids per second (Dennis and Bremer, 1974; Young and Bremer, 

1976). For this reason, the information on a defined amount of effector metabolites at a defined 

time-point is transmitted as time-delayed response. Moreover, the metabolite-dependent 

expression of a gene encoding a fluorescent protein results in a further delayed optical response 

due to protein folding and the maturation of the chromophore. In the case of eYFP, the 

maturation requires about seven minutes in E. coli at 37°C, while the maturation of Venus was 

measured to proceed within two minutes under the same conditions (Iizuka et al., 2011; Nagai et 

al., 2002). In comparison, FRET-based biosensors or engineered riboswitches, binding 

fluorophores upon metabolite recognition, reveal an improved temporal resolution of effector 

metabolites as ligand-binding directly results in the transmission of fluorescence as consequence 

of a conformational change (Michener et al., 2012; Mohsin and Ahmad, 2014; Potzkei et al., 

2012; Schallmey et al., 2014; You et al., 2015; Zhang et al., 2015b).  

For quantitative intracellular measurements, fastidious calibration and characterization of the 

and output signal under highly defined conditions (Dietrich et al., 2010). To this end, the effector 
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molecule must enter the cell. This, however, is often not possible due to the lack of uptake 

systems or inappropriate physical characteristics of the effector to cross the membrane (e.g. high 

hydrophilicity). In contrast to TF-based biosensors, FRET-based biosensors allow for quantitative 

analyses upon intensive calibration and definition of assay conditions. This is difficult to achieve 

for TF-based biosensors due to the high number of mechanisms involved in the expression of 

target genes upon metabolite sensing (Constantinou and Polizzi, 2013; Michener et al., 2012). In 

theory, quantitative intracellular analysis would need the incorporation of any intrinsic and 

extrinsic factor affecting gene expression or fluorescence development, which is hardly feasible 

in living organism due to e.g. gene expression noise (Carey et al., 2013; Elowitz and Leibler, 

2000; Keren et al., 2015; Sanchez et al., 2013). Beyond that, TF-based biosensors report on the 

intracellular metabolite level, which is a prerequisite for an application in FACS screenings. Most 

biotechnological applications, however, aim to maximize the amount of excreted product in the 

supernatant to reduce costs during downstream processing without an interest for intracellular 

metabolite levels (Delvigne et al., 2015). For this reason, a quantification of intracellular 

metabolites is negligible in most cases. Nevertheless, TF-based biosensors report on the relative 

intracellular metabolite concentration in a reliable way, which allows for the discrimination of 

cells or populations with different productivity during HT screening or monitoring of 

bioprocesses using FC/FACS or fluorescence microscopy. 

Traditionally, the biosensor construct consists of the transcriptional regulator and the target 

promoter controlling the expression of an actuator gene encoded on a plasmid. During the 

development of the mtr biosensor for detecting L-phenylalanine in E. coli, different designs of 

the biosensor with and without the transcriptional regulator were found to drastically affect the 

transcription factor avoids titration effects of the native regulator and allows for heterologous 

gene expression. On the other hand, the increased numbers of TF molecules can have a strong 

impact on the bacterial physiology by skewing the activity of the transcriptional network, 

especially in the case of global regulators controlling the expression of various target genes. This 

effect can even be multiplied by the amount of plasmid copies in the case of plasmid-based 

expression of sensor circuits (Delvigne et al., 2015). To avoid the interference with the native 

regulatory network, to prevent the multiplication of gene expression noise or to reliably study the 

dimensions of phenotypic heterogeneity, the use of low-copy number plasmids or chromosomal 
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integration have shown to be of great benefit (Freed et al., 2008; Mustafi et al., 2014; Silander et 

al., 2012). In addition, the different architectures of the mtr biosensor in this study (chapter 3.4) 

demonstrated that an additional copy of the regulator is often not necessary and may even lead to 

improved performance characteristics. For this reason, it might be advantageous to test different 

biosensor designs e.g. with and without the additional expression of a native regulator in advance. 

Further strategies to alter the performance characteristics of a biosensor are discussed in chapter 

4.1.4  

For the visualization of intracellular metabolites, biosensors usually drive the production of an 

auto-fluorescent protein, e.g. green fluorescent protein (GFP) and derivatives. The drawback of 

GFP-derived fluorescent proteins, however, consists in the requirement of oxygen for the 

formation of the chromophore (Craggs, 2009), which excludes their reliable application during 

micro- and anaerobic cultivation. Alternatively, Drepper and co-workers developed a set of flavin 

mononucleotide (FMN)-based fluorescent proteins (FbFPs) based on the photoactive light 

oxygen voltage (LOV)-domain of blue-light photoreceptors from Bacillus subtilis and 

Pseudomonas putida, which enable fluorescent signaling in the absence of oxygen (Drepper et 

al., 2007; Drepper et al., 2010; Walter et al., 2012). Their low brightness, quantum yield and 

strongly reduced thermal or photostability in contrast to GFP derivatives have indeed been 

reported and addressed in different studies (Christie et al., 2012; Song et al., 2013; Wingen et al., 

2014), however, the broad applicability of FbFP is still hampered (Mukherjee and Schroeder, 

2015). Traditionally, GFP feature high stability with a half-life of more than 24 hours. Highly 

stable fluorescent proteins prevent dynamic measurements by the accumulation of reporter 

proteins within the cell. Engineered GFP derivatives already exhibit reduced photostability 

(Shaner et al., 2005). Additionally, the destabilization of auto-fluorescent proteins using variants 

of ssrA tags, which are recognized by cytoplasmic proteases, revealed further improvement of 

dynamic measurements of fluorescent signals in various microbes (Andersen et al., 1998; 

Hentschel et al., 2013; Triccas et al., 2002).  

The application of biosensors for live cell imaging studies in microfluidic devices offers the 

possibility to study microbial population dynamics at the single cell level (Mustafi et al., 2014). 

The rate of iterative excitation should be kept a minimum  especially excitation light of the 

energy-rich short wavelength  to avoid phototoxic effects e.g. DNA damage by free radicals 

(Haselgrübler et al., 2014; Lipovsky et al., 2010; NPG-Editorial, 2013; Waters, 2013). Especially 
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the performance of multicolor experiments of different parameters in parallel using several 

fluorescent proteins can provide an immense physiological burden on the living cell (Schlüter et 

al., 2015; Shaner et al., 2005). To reduce the artifacts of exposed light, fluorescent proteins have 

to be carefully chosen according to their respective application and the organism under study. 

4.1.4 Engineering of biosensors for improved and desired characteristics 

The different designs of the mtr biosensor for L-phenylalanine detection revealed a significant 

range, sensitivity and background signal (chapter 3.4). Extending beyond, diverse studies 

demonstrated that engineering of biosensors according to the respective purpose can become 

feasible due to the modular architecture of promoter regions (Blazeck and Alper, 2013) and 

transcriptional regulators (Galvao et al., 2007; Zhang et al., 2015b).  

The mtr biosensor, which consists of the native promoter of mtr fused to the gene encoding the 

fluorescent protein Venus (Fig. 4.1.4.1 A), features a maximal fivefold increased fluorescent 

signal in response to L-phenylalanine (chapter 3.4). Other biosensors such as the pSenLys sensor 

for sensing L-lysine and the DcuR/DcuS-based or PcaR-based sensor for sensing dicarboxylic 

acids showed similar dynamic ranges of signal output (six- to 15-fold) in the presence of the 

respective effector molecule (Binder et al., 2012; Dietrich et al., 2013). The Lrp biosensor 

featured an about tenfold increased signal in response to L-isoleucine, twelvefold to L-valine, 22-

fold to L-leucine and an even 78-fold dynamic range to L-methionine accumulation (Mustafi et 

al., 2012). A broad dynamic range as shown for L-methionine detection by the Lrp sensor is 

desired to reliably distinguish between different productive cells by FC or fluorescence 

microscopy. To enhance fatty acid sensing in E. coli, Zhang and coworkers introduced the TF-

binding sites of the transcriptional regulator FadR into the strong phage promoters of lambda (PL) 

and T7 (PA1), thereby increasing the dynamic range up to 1000-fold (Zhang et al., 2012). 

Similarly, Lutz and Bujard engineered the tight regulation of the TetR/O system for sensing 

anhydrotetracycline over a 5000-fold range (Lutz and Bujard, 1997). A similar approach could 

also be considered for improving the dynamic range of the mtr biosensor in response to L-

phenylalanine. This could be achieved by introducing one or two TyrR-binding sites up- and/or 

downstream of the -35 region of a strong phage promoter e.g. the well-studied lambda phage 

promoter (Fig. 4.1.4.1 B).  
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Fig. 4.1.4.1 The mtr biosensor and potential designs for improved and desired performance 
characteristics. A. The mtr biosensor is based on the native promoter Pmtr fused to the gene 
encoding the fluorescent protein Venus. The native promoter Pmtr consists of a weak and a strong 
TyrR box and two TrpR boxes. For L-phenylalanine (F)-mediated activation of gene expression, 
TyrR binds as dimer to the strong TyrR-binding site and recruits RNA-polymerase. L-tyrosine 
(Y)-mediated gene expression requires binding of TyrR as hexamer to the weak and strong TyrR 
boxes. B. Introduction of the strong TyrR box between the -10 and -
promoter PL might improve the dynamic range and might likewise reduce the background noise. 
C. Randomization of TF-binding sites (shaded) by e.g. error-prone PCR results in a diversity of 
promoter derivatives of which mtr promoters with a Kd in the low mM range might be screened. 
D. The recognition of L-tyrosine as effector of the mtr promoter might be inhibited by removing 
or replacing the weak TyrR box. 
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Reporter systems with a dynamic response in the μM to mM range are of high value for 

biotechnological applications (Eggeling et al., 2015). For this reason, the sensitivity, which 

describes the rate of increase in reporter output to the amount of effector molecules, presents an 

important factor for the performance of the biosensor (Dietrich et al., 2010). To improve the 

sensitivity of the regulator BenR of P. putida KT2440 towards 3-methylbenzoate, Silva-Rocha 

and de Lorenzo successfully completed a second truncated operator motif within the Pb promoter 

(Silva-Rocha and de Lorenzo, 2012). Likewise, the addition of several additional operator motifs 

was proposed to increase the sensitivity (Tabor et al., 2009). The mtr biosensor, however, is 

already highly sensitive to L-phenylalanine in the μM range. The promoter of mtr contains TrpR-

binding sites for L-tryptophan-mediated repression and upstream located TyrR-binding sites for 

L-phenylalanine- and L-tyrosine-mediated activation (Pittard et al., 2005). Engineering of TF-

binding sites e.g. by error prone PCR, and screening for biosensors featuring a Kd in the low mM 

interesting L-phenylalanine or L-tyrosine production (Fig. 4.1.4.1 C). 

The specificity of a biosensor for a defined effector molecule is important to reduce false-positive 

isolates during FACS HT screening or to avoid the misinterpretation of live cell imaging or 

bioprocess studies. As the mtr biosensor senses the aromatic amino acids L-phenylalanine and L-

tyrosine, the isolation of L-tyrosine and L-phenylalanine producers is likely. The case of the mtr 

biosensor fortunately comprises an easy solution of this dilemma: L-tyrosine-mediated activation 

of the mtr promoter requires binding of TyrR as hexamer to the strong and the weak box (TF-

binding site) in contrast to L-phenylalanine detection, which only requires binding to the strong 

box (Pittard et al., 2005; Sarsero and Pittard, 1991). By removing or replacing the weak box, the 

activation of gene expression upon L-tyrosine recognition may be eliminated (Fig. 4.1.4.1 D).  

The diversity of biotechnologically produced metabolites challenges the expansion of biosensors 

for non-native and non-natural products (Schallmey et al., 2014). Theoretically, the modular 

architecture of transcriptional regulators (metabolite- and DNA-binding domains) enables 

engineering of the biosensor for improved, altered or novel specificities (Galvao and de Lorenzo, 

2006). Different strategies proved successful to modify the ligand binding pockets of regulators 

by error-prone PCR (Wise and Kuske, 2000), chemical and saturation mutagenesis (Tang and 

Cirino, 2011; Tang et al., 2008; Tang et al., 2013) followed by HT screening of mutant libraries, 

or computational modelling based on crystal structures (Combs et al., 2013; Fry et al., 2010; 
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Looger et al., 2003; Mandell and Kortemme, 2009). A further approach relies on the artificial 

assembly of enzymatic metabolite-binding domains and the AraC DNA-binding domain e.g. for 

sensing isopentenyl diphosphate (Chou and Keasling, 2013). Furthermore, the orthogonality of 

biological functions still provides a bottleneck for metabolic engineering strategies, which often 

rely on heterologous pathways for the formation of non-native products (Mahr and Frunzke, 

2016; Schallmey et al., 2014; Zhang et al., 2015b). For the functional transfer of biological parts 

between different host species, the expression from native promoters of the acceptor organisms as 

well as codon-optimization may be highly beneficial (Gopal and Kumar, 2013; Gustafsson et al., 

2004; Sorensen and Mortensen, 2005). In addition, engineering the contact between the non-

-

subunit of the RNA polymerase, DNA binding sites), which is necessary for metabolite 

recognition and signal transduction, might be interesting targets for improving orthogonality (Fig. 

4.1.4.2).  

 

Fig. 4.1.4.2 The interaction between the transcription factor (TF, gray), the promoter Px and the 
RNA polymerase (green). Potential targets for the improvement of the recognition of a non-
native TF or native/non-native promoter Px by the native transcription machinery: 1. The 

-subunit of the RNA-polymerase and the TF. 2. The recognition of the -
10 and - -factor. 3. The recognition between the TF and the TF-binding site 
(operator). 4. The distance between the -35 region and the TF-binding site.  

In previous studies, the equipment with eukaryotic-specific signals (nuclear localization signal, 

transcriptional activation domain, etc.) proved successful to transfer bacterial regulators to yeast 

or mammalian cells allowing for S-adenosylmethionine, fatty acids or 2,4-diacetylphloroglucinol 

sensing (Ellis and Wolfgang, 2012; Stanton et al., 2014; Teo and Chang, 2014; Umeyama et al., 
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2013). Nevertheless, efficient strategies are required to improve the orthogonality of 

transcriptional regulators and to understand the detailed interactions between the regulator, 

metabolite, operator and RNA polymerase (Charoensawan et al., 2015; Zhang et al., 2015b). 

4.2 Novel strategies for engineering microbial cell factories  

Rational metabolic engineering approaches mainly focus on the development of biosynthetic 

pathways, the sufficient supply with precursors, the import of substrates or the export of products 

as well as the degradation of those. A global and comprehensive consideration of the impact on 

microbial physiology is often neglected due to the high complexity of carbon and energy fluxes 

in living organisms. In addition, there are still many unknown and uncharacterized gene 

activities, regulatory mechanisms and metabolic fluxes, which obscure a systems-level insight 

into the global metabolic landscape. For this reason, novel metabolic engineering strategies and 

tools are in demand, which incorporate the entire physiology of the organism for improved 

production phenotypes. Here, adaptive laboratory evolution approaches as well as random 

mutagenesis of the entire genome followed by an elaborated screening strategy enabled the fast 

identification of non-intuitive targets for improving microbial cell factories (Atsumi et al., 2010; 

Baek et al., 2015; Fong et al., 2005; Mahr et al., 2015; Park et al., 2014; Sandberg et al., 2014; 

Xie et al., 2015). Further valuable contributions of both strategies for metabolic engineering 

purposes are highlighted in the following reviews (Abatemarco et al., 2013; Dietrich et al., 2010; 

Eggeling et al., 2015; Portnoy et al., 2011). Recently, the application of genetically-encoded 

biosensors revealed the expansion of the utility of these strategies to engineer biotechnological 

interesting, but inconspicuous metabolite production (Fig. 4.2).  

4.2.1 Application of biosensors for high-throughput screening 

Since the start of microbial engineering in the early last century, the diversification of genetic 

elements mimicking the processes of evolution and the consequential screening for desired 

functions have proven successful to develop novel and improved biotechnologically interesting 

phenotypes such as increased metabolite production (Becker and Wittmann, 2015; Dietrich et al., 

2010; Parekh et al., 2000). The low-throughput (<103 individuals per day) of analytical 

techniques such as chromatography, mass or nuclear magnetic resonance spectroscopy, however, 

hamper screening of large mutant libraries. Here, the application of genetically-encoded 

biosensors visualizing intracellular metabolites, which allows for interfacing with FACS, 

revolutionized the HT screening of inconspicuous, small metabolites.  
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Fig. 4.2 Schematic of A. FACS HT screening of mutagenized sensor cells and B. biosensor-
driven adaptive laboratory evolution. A. For FACS HT screening, sensor containing cells are 
randomly mutagenized by chemical mutagens such as MNNG. Cells are analyzed by FC and 
those with the highest fluorescent output are isolated by FACS as single clones on agar plates. B. 
For the biosensor-driven adaptive laboratory evolution, sensor cells with the top fluorescent 
output are iteratively isolated and re-cultivated. Then, high fluorescent sensor cells are spotted as 
single clones on agar plates. A. and B. Isolated single clones are re-cultivated in microtiter plates 
and analyzed for growth and fluorescence. The supernatant is assessed for the production by 
uHPLC. Subsequently, cells featuring desired characteristics are sequenced.  

In a proof-of-principle study, the mtr biosensor for the detection of L-phenylalanine was used to 

screen a chemically mutagenized library of E. coli K-12 MG1655 cells using FACS (chapter 3.4). 

After mutagenesis, biosensor containing cells were screened by FACS, which allows for 

screening of about 80.000 cells per second and the possibility to isolate about 10.000 clones 

within the same time span (Fig. 4.2 A). Optionally, several enrichment steps with and without 

intermediate cultivation can be included to reduce false-positive clones. Following the isolation 

of single clones, a second screening step is of crucial importance as the increase of throughput is 

typically accompanied by reduced sensitivity and the neglect of small variations. Typically, 
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FACS-based screens are affected by the isolation of false-positive clones (22% this study; 77% 

(Mustafi et al., 2012)) due to the variance of the fluorescent signal for technical issues and noisy 

gene expression (Delvigne et al., 2015; Dietrich et al., 2010; Sanchez et al., 2013). In addition, 

the enrichment of exporter gene mutations improving or reducing the ability of metabolite 

secretion as well as the occurrence of modifications within the fluorescent reporter gene may 

likewise skew the picture of the actual production capacity of the organism, which can be 

revealed by re-analysis of isolated clones.  

During screening for L-phenylalanine producers, about one third of 90 isolated mutant strains 

displayed at least two-fold up to 4.3-fold increased production titers (Fig. 4 in chapter 3.4). 

Similar studies featured a comparable fraction of positive clones (Binder et al., 2012; Mustafi et 

al., 2012). The top mutant clone excreted 160 μM L-phenylalanine into the supernatant. 

Compared to rationally engineered strains, which produce up to 300 mM ( 50 g L-1) (Backman et 

al., 1990; Rüffer et al., 2004), the outcome appears quite low. Increased levels of L-phenylalanine 

can strongly impact the growth rate (Grinter, 1998). Polen and coworkers observed that the 

addition of 5 g L-1 L-phenylalanine reduced the growth rate by a factor of two (Polen et al., 

2005). For this reason, the iterative enrichment by FACS, which was used to reduce the isolation 

of false-positive clones, might likewise select against slow growing cells impacted by increased 

L-phenylalanine production (chapter 3.4). Furthermore, the applied biosensor featured a highly 

sensitive response in the low μM range by approximating saturation in the mid-μM range. These 

performance characteristics of the biosensor consequently led to the isolation of clones with 

corresponding intracellular amino acid concentrations. Thereby, the identification of single 

-

-phenylalanine, the mtr biosensor responds additionally to 

increased L-tyrosine levels. Both aromatic amino acids share a great part of their biosynthetic 

route (Sprenger, 2007). Consequently, mutations increasing prephenic acid  a precursor of both 

amino acids  enhance the production of both. In this case, the fluorescent output of the biosensor 

would be composed of the response to L-phenylalanine and L-tyrosine. Interestingly, no clone 

with significantly increased L-tyrosine production was isolated (data not shown). Altogether, the 

design of the screening process (e.g. by implementation of several enrichment steps) as well as 

the performance of the biosensor may significantly impact the outcome of FACS HT screening. 

Here, the engineering of the biosensor for reduced sensitivity, improved specificity towards L-
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phenylalanine or the increase of the dynamic range as described in chapter 4.1.4 

 highly beneficial. For further 

limits and considerations for the application of biosensors, the reader is referred to chapter 4.1.3 

-  

For the establishment of the mutant E. coli library, the alkylating mutagen N-methyl- -nitro-N-

nitrosoguanidine (MNNG) was chosen due to ability to generate genome-wide mutations as 

observed in a variety of previous studies (Binder et al., 2012; Harper and Lee, 2012; Ohnishi et 

al., 2008). The drawback of random mutagenesis is the emergence of several hundred small 

nucleotide polymorphisms (SNPs) throughout the entire genome, which hampers the 

identification of valuable, non-intuitive mutations. For example, the top five mutants isolated by 

FACS HT screening using the mtr biosensor revealed a total of 538 SNPs, of which 310 SNPs 

resulted in amino acid exchanges or stop codons (Tab. S4.2.1.1). Interestingly, amino acid 

exchanges were found in nine genes (mtr, pheA, trpB, trpD, trpE, tyrA, tyrP, yedA, yddE), which 

are associated with the biosynthesis or transport of aromatic amino acids. To verify beneficial 

SNPs for metabolite production, a high number of single mutations have to be re-introduced into 

a cured genomic background (Binder et al., 2012), which is laborious and time-consuming. 

of multiple independent mutants, or a recombineering strategy interfacing with biosensors based 

on FACS have been developed to improve the identification of valuable mutations (Binder et al., 

2013; Harper et al., 2011). The interesting interplay of epistatic or synergistic mutations as 

observed during evolution-based studies (Cheng et al., 2014; Horinouchi et al., 2015; Oide et al., 

2015; Sandberg et al., 2014; Tenaillon et al., 2012) might hardly be revealed by the abundance of 

mutations.  

In addition, extensive studies using MNNG in E. coli and C. glutamicum demonstrated the 

preferential accumulation of GC to AT transitions (96.6%) and the dependency of the genomic 

context (Harper and Lee, 2012; Ohnishi et al., 2008), which strongly restricts the spectra of 

amino acid exchanges. In the mtr biosensor-based FACS HT screening of MNNG-mutagenized 

E. coli cells, for instance, 12% of all amino exchanges resulted in serine, 11% in isoleucine, and 

10% in aspartic acid, asparagine or valine (Tab. S4.2.1.2). Exchanges to glycine, tyrosine, 

tryptophan, glutamine, proline or alanine were hardly or not identified. Furthermore, amino acids 

phenylalanine, tyrosine, isoleucine, asparagine or lysine were not found to be exchanged by 
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MNNG-mutagenesis (Tab. S4.2.1.2). This mutation spectra strongly limits the potential for the 

identification of ideal and desired protein functions e.g. enzymatic activities, feedback resistance, 

allosteric or DNA-binding capabilities, or protein-protein interactions. A broad range of 

alternative mutagens exists such as mutagenic chemicals including other alkylating agents, azides 

or base analogs (Benigni et al., 1992; Cai and Fix, 2002; Kodym and Afza, 2003; Pavlov et al., 

1991; Richardson et al., 1988), or physical mutagens like ultra-violet (UV) and electromagnetic 

radiation (gamma rays or X rays) or atmospheric and room temperature plasma (ARTP) 

mutagenesis (Kodym and Afza, 2003; Zhang et al., 2015c; Zhang et al., 2014b). However, they 

all share rather one-sided mutation spectra. Here, the diversification of single, genetic fragments 

such as catalytic domains of interesting enzymes by error-prone PCR followed by FACS HT 

screening might contribute to the identification of desired phenotypical characteristics 

(Schendzielorz et al., 2014; Siedler et al., 2014a; Siedler et al., 2014b).  

4.2.2 Biosensor-driven adaptive laboratory evolution 

In contrast to random mutagenesis, adaptive laboratory evolution (ALE) approaches driven by 

mutation and selection profit from a strongly reduced number of mutations by promoting the 

establishment of beneficial traits and selecting against detrimental mutations at the same time 

(Abatemarco et al., 2013; Harper et al., 2011; Portnoy et al., 2011). Based on a natural mutation 

frequency of 10-10 to 10-9 mutations per base pair per replication cycle and short generation times 

(Barrick and Lenski, 2013), laboratory evolution experiments of microbes allow the selection of 

beneficial phenotypical traits from a natural diversity of phenotypic characteristics. So far, 

adaptive laboratory evolution has mostly been applied to easy selectable or fitness-linked 

phenotypes by iteratively increasing environmental stress (Eckdahl et al., 2015; Lee et al., 2013; 

Marietou et al., 2014; Oide et al., 2015; Reyes et al., 2014).  

4.2.2.1 The establishment biosensor-driven adaptive laboratory evolution 

In this study, the applicability of laboratory evolution was expanded to inconspicuous, small 

metabolites by imposing an artificial selective pressure on the fluorescent output of a biosensor 

using FACS. This novel approach was successfully applied to improve production of the basal L-

valine producer strain C. glutamicum aceE containing the Lrp biosensor (chapter 3.2, 

(Blombach et al., 2007; Mahr et al., 2015)). Cells with the top fluorescent output indicating 

increased L-valine production were iteratively isolated by FACS and (re-) cultivated (Fig. 4.2 B). 

aceE strain displays a growth-decoupled L-valine production phenotype, cells were 
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iteratively sorted in the production phase after 28 hours of cultivation. Within five rounds of 

toggled sorting and cultivation, isolated evolved strains featured improved growth, on average 

about 25% increased L-valine production and three- to four-fold reduced by-product (L-alanine) 

formation. Sequencing of two isolated mutants revealed a total of seven SNPs, of which four 

(ureD-E188*, glxR-T93S, prpD2-T201I and rpsP-D30D(c90t)) were re-introduced and assessed 

in the non- aceE strain. All mutations featured about 15-20% increased biomass-

specific L-valine yields (YP/X). The ureD-E188* mutation even resulted in a further increased L-

valine yield of about 100%. Moreover, the reduction of L-alanine formation was attributed to a 

mutation in the cAMP-binding pocket of glxR (Mahr et al., 2015). To test the applicability of the 

biosensor-driven adaptive laboratory evolution approach to improve likewise the production of 

other metabolites, the L-leucine production strain C. glutamicum MV-Leu7 (Vogt et al., 2014) 

was additionally employed in a FACS-based evolution experiment using the Lrp biosensor (Fig. 

S4.2.2.1). aceE strain for L-valine production, MV-Leu7 features a growth-

coupled production phenotype, which requires an altered sorting strategy. Here, sorting of cells 

with the highest fluorescent output in the early exponential phase at an OD600 of 4 proved to be 

more efficient in contrast to sorting in the stationary phase after 28 hours, which was beneficial 

for the evolution of growth-decoupled L-valine production (data not shown). Within four iterative 

evolution steps, the biomass-specific L-leucine yield YP/X increased from 0.55 to 0.81 mmol per g 

cell dry weight (CDW) by around 50% (Fig. S4.2.2.1). Interestingly, the growth rate dropped 

during the evolution experiment, which might result from the rerouting of carbon sources towards 

L-leucine production. Nevertheless, these results prove biosensor-driven adaptive laboratory 

evolution efficient and straightforward for improving production strains without a deep 

knowledge of the complex bacterial physiology.

4.2.2.2  

(Schmidt-Dannert and Arnold, 1999), 

the outcome of the biosensor-driven adaptive laboratory evolution approach strongly depends on 

several factors including i) the performance of the biosensor, ii) the growth- and production-

phase selected for FC analysis and sorting, iii) the medium composition, iv) the scale of 

cultivation, v) the sorting strategy and accuracy of FACS and/or vi) cultivation conditions 

affecting the living cell.
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First of all, the performance characteristics of the biosensor seem to be of high importance: 

During evolution, no further improvement of extracellular L-valine accumulation of the evolved 

culture was observed after the fifth sorting step (Fig. 1 in chapter 3.2, (Mahr et al., 2015)). This 

observation might indicate the saturation of the biosensor response, where an increase of 

intracellular amino acid concentration does not further result in an increase of the output of the 

biosensor due to reaching the highest rate of occupation of the promoter with transcription factors 

(Bintu et al., 2005a; Bintu et al., 2005b). For this reason, biosensor-driven evolution selecting 

cells with the top fluorescent output could not further improve L-valine production using the Lrp 

biosensor. Here, engineering of the biosensor is proposed to expand the operating range of the 

biosensor-driven adaptive laboratory evolution. While the sensitivity might be reduced by e.g. 

modifying the TF-binding site of the promoter or the DNA-binding domain within the TF itself, 

the dynamic range might be enhanced e.g. by the incorporation of the Lrp operator sequence in a 

strong phage promoter neering of biosensors for improved 

 

The novel ALE approach proved highly successful to identify bottlenecks during the cultivation 

of the L-valine producer strain C. glutamicum aceE. For instance, the identified ureD-E188* 

mutation generates a truncated, non-functional urease-accessory UreD protein. In a previous 

publication, UreD was categorized as protein of crucial importance for urease activity in order to 

degrade urea to ammonia and carbon dioxide (Nolden et al., 2000). Traditionally, urea serves as 

nitrogen source in the CGXII cultivation medium (Keilhauer et al., 1993). Interestingly, the lack 

of urea further increased L- aceE strain (Fig. 4 and 5 in chapter 3.2, 

(Mahr et al., 2015). Additional experiments within this study revealed that the degradation of 

urea strongly impacts the pH of a shake flask culture without pH maintenance by ammonia 

generation. This leads to improved growth, but strongly reduced L-valine production. 

Furthermore, the analyses indicated an increased activity of the anaplerotic enzymes 

phosphoenolpyruvate- and pyruvate carboxylase under elevated levels of CO2/HCO3
- 

(degradation product of urea) reducing the availability of the L-valine-precursor pyruvate by an 

enhanced efflux of glycolytic products via anaplerosis (chapter 3.3). The beneficial effect of urea 

deficiency on L-valine production, however, was more pronounced during shake flask cultivation 

(Fig. 5 and Fig. S4 in chapter 3.2 (Mahr et al., 2015))  the method of choice during the 

performed evolution experiment. Obviously, the presence of urea in the CGXII minimal medium 



120  Discussion 

provided a bottleneck for L-valine production. It remains a debatable point whether a similar 

urease inactivating mutation would have been found during altered cultivation and sorting 

conditions. Certainly, altered evolution strategies (e.g. sorting time, medium composition, etc.) 

may lead to completely different outcomes. The later application of the evolved strain has to be 

considered during the choice of cultivation conditions.  

4.2.2.3 Beyond biosensor-driven adaptive laboratory evolution 

Based on the natural mutation frequency, a total of seven mutations emerged during five rounds 

of biosensor-driven adaptive laboratory evolution (Tab. 2 in chapter 3.2, (Mahr et al., 2015)). 

Here, the implementation of a mutagenesis strategy, which only slightly increases the frequency 

of mutations, might be beneficial to allow selection from an increased genetic diversity. In 

contrast to random mutagenesis, the application of so-called mutator strains containing defective 

DNA repair systems might present an alternative option to increase diversity (Greener et al., 

1997; Loh et al., 2010; Luan et al., 2013; Muteeb and Sen, 2010). For example, Oide and 

colleagues observed the emergence of an unexpected high number of mutations during ALE, 

which was proposed to result from the spontaneous development of a mutator phenotype in C. 

glutamicum cells (Oide et al., 2015). Furthermore, Chou and Keasling established the feedback-

regulated evolution of phenotype (FREP) approach in E. coli, where the mutation rate is 

dynamically regulated by the target metabolite concentration controlling the expression of a 

mutator gene (mutD5) encoding a deficient proofreading exonuclease of DNA polymerase III 

(Chou and Keasling, 2013). However, FREP as well as the spontaneous development of mutator 

strains resulted in several hundred SNPs throughout the entire genome, which complicated the 

search for beneficial mutations. A strong reduction of the mutation rate by controlling a mutator 

gene from a weak, constitutive promoter might result in a decreased number of mutations and 

would allow interfacing with the biosensor-driven adaptive laboratory evolution approach. Here, 

a mutant mutT gene encoding oxoguanine-triphosphatase as part of the DNA mismatch repair 

machinery might be beneficial to increase the frequency of mutations in C. glutamicum 

(Nakamura et al., 2003; Resende et al., 2011).  

An alternative strategy to FACS-based laboratory evolution of inconspicuous phenotypes 

provides the coupling of the biosensor output to growth (Dietrich et al., 2013; van Sint Fiet et al., 

2006). By linking small-molecule production to an actuator mediating e.g. antibiotic or toxin 

resistance, for instance, bacterial growth in the presence of antibiotics or toxins is only possible, 
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if cells produce sufficient amounts of desired metabolites. Theoretically, a high selective pressure 

elicited by a high concentration of antibiotics or toxins should lead to the growth of cells with 

high metabolite production. One great limit of this strategy, however, is the evolution of 

antibiotic resistance not linked to product formation or the application of antibiotics, which are 

degraded over time. Furthermore, the system is limited at the point, where the detrimental effect 

of the antibiotic or toxin exceeds the potential for the development of resistance.  

Beyond that, biosensor-driven adaptive laboratory evolution can be highly beneficial to balance 

metabolic fluxes upon vast metabolic engineering efforts such as the introduction of heterologous 

biosynthetic pathways or the deletion of central physiological reactions. Moreover, this strategy 

may also be applied to improve the tolerance of the engineered strain to detrimental or growth-

inhibiting, inconspicuous end- and by-products such as aromatic amino acids (Polen et al., 2005). 

Altogether, biosensor-driven adaptive laboratory evolution approaches serve as excellent, 

complementary tools for metabolic engineering and may contribute to the identification of novel 

and non-intuitive targets to improve microbial cell factories. 

4.3 Future prospects of biosensor applications 

The present study demonstrates the enormous versatility of biosensors based on transcriptional 

regulators to reveal the formation of subpopulations in bioprocesses, to identify new and non-

intuitive targets for strain engineering, and to improve fluxes of metabolites or energy for 

increased product formation. The broad biotechnological application of biosensors requires 

readily accessible sensor devices with appropriate and/or easy adjustable performance 

characteristics. Although efforts exist to generate libraries of standardized biological modules  

so-called BioBricks (http://parts.igem.org/Catalog) (Endy, 2005; Voigt, 2006), the design of 

suitable, orthogonal biosensors is not yet like a Lego set. The efficient, easy and fast generation 

of custom-made sensor devices is still a bottleneck of the biosensor technology and has to be 

addressed in the future.  

In the last years, increasing interest focused on the integration of regulatory circuits to 

dynamically control and balance metabolic fluxes upon diverse stimuli, and to overcome the 

natural barriers for metabolite overproduction (Dahl et al., 2013; Liu et al., 2015b; Xu et al., 

2014; Zhang et al., 2012; Zhou and Zeng, 2015). To this end, elaborated multiomic strategies are 

required to identify metabolic bottlenecks. In addition, efficient workflows are in demand to 
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screen for biological bricks suitable to dynamically control pathways. For example, toggle switch 

designs proved successful to shift between different metabolic pathways upon intrinsic or 

extrinsic signals (Anesiadis et al., 2013; Soma et al., 2014; Tsuruno et al., 2015): L-valine 

production in C. glutamicum was engineered by increasing the supply with precursors via the 

inactivation of the PDHC ( aceE) (Blombach et al., 2007; Schreiner et al., 2005) or the 

downregulation of aceE (Buchholz et al., 2013). However, both strategies are inefficient as they 

require the addition of two expensive carbon sources or feature an impaired growth phenotype 

with a low substrate-specific yield (Blombach et al., 2007; Buchholz et al., 2013; Eikmanns and 

Blombach, 2014). Here, the incorporation of a toggle switch redirecting the flux from glycolysis 

towards L-valine biosynthesis upon reaching a high biomass formation might kill two birds with 

one stone  increased growth rates and biomass formation as well as improved metabolite 

production on a single carbon source. Furthermore, genetic circuits might also be interesting to 

control and coordinate the performance of synthetic communities of orthogonal microbes where 

organism A delivers precursors, carbon sources or energy to organism B producing the 

metabolite of interest (Bertrand et al., 2014; Hoelzle et al., 2014; Jagmann and Philipp, 2014; 

Pandhal and Noirel, 2014). For instance, Marchand and Collins established a quorum-sensing 

based system to allow communication of a synthetic community of E. coli and B. subtilis 

(Marchand and Collins, 2013). Genetic circuits may be beneficial e.g. to elicit growth or 

biosynthetic pathways of organism B upon a sufficient production of precursors by organism A. 

In the last years, biosensors were designed that likewise report on by-product formation, 

accumulation of toxic intermediates or the lack of oxygen or carbon sources  extrinsic and 

intrinsic factors that can influence bioprocesses (Constantinou and Polizzi, 2013). Linking the 

biosensor signal via electrodes to feed pumps or the aeration system, for instance, the 

intracellular requirements obscured by extracellular measurements may immediately be satisfied.  

All these examples demonstrate the high potential of genetically-encoded biosensors to give new 

impetus to biotechnological strain and bioprocess development. Driven by the fascination and 

potential of microbial cells, the creativity for the implementation of biosensor circuits in 

microbial cell factories will certainly not arrest in the future.  
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6.2 Supplemental information  Biosensor-driven adaptive laboratory evolution of L-

valine production in Corynebacterium glutamicum 
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Supporting Tables 

Table S1 Comparative transcriptome analysis of mRNA levels of populations after the third 
-fold altered mRNA 

level. The relative mRNA level is given as average ratio (3rd/2nd) calculated from three 
independent biological replicates. Known transcriptional regulation of genes by transcriptional 
regulators is indicated by R (repression) and A (activation) (Pauling et al., 2012). 

Locus Gene Annotation R/A Ratio 
3rd/2nd 

p value 

      
  GlxR regulon    

cg0344 fabG1 3-oxoacyl-acyl-carrier protein reductase  RGlxR 2.937 0.043 
cg0345 - putative metal-dependent hydrolase of the 

TIM-barrel fold 
RGlxR 2.488 0.002 

cg0346 fadE glutaryl-CoA dehydrogenase  RGlxR 2.415 0.045 
cg0445 sdhCD succinate:menaquinone oxidoreductase, 

cytochrome b subunit 
RGlxR 
RRamB 
RRipA 

ADtxR 

ARamA 

0.459 0.036 

cg0791 pyc pyruvate carboxylase  RGlxR 
RRamB 

0.405 0.049 

cg0797 prpB1 2-methylisocitrate lyase RGlxR 0.355 0.011 
cg0812 dtsR1 acetyl/propionyl-CoA carboxylase, beta 

subunit 
RGlxR 
RFasR 

0.308 0.006 

cg0936 rpf1 resuscitation promoting factor AGlxR 0.267 0.011 
cg0957 fas-IB fatty acid synthase, Fas-I type RGlxR 

RFasR 
0.401 0.024 

cg1037 rpf2 resuscitation promoting factor, secreted 
protein 

AGlxR 
ARamA 

RRamB 

RMtrA 

0.347 0.035 

cg1314 putP proline transport system RGlxR 
ALexA 

0.413 <0.001 

cg1341 narI nitrate reductase, gamma subunit AGlxR 
ARosR 

0.223 0.033 
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Locus Gene Annotation R/A Ratio 
3rd/2nd 

p value 

RRipA 

RArnR 
cg1342 narJ nitrate reductase, delta subunit, assembly 

factor 
AGlxR 
ARosR 

RRipA 

RArnR 

0.206 0.039 

cg1343 narH nitrate reductase, beta subunit, iron sulfur 
protein 

AGlxR 

ARosR 
RRipA 

RArnR 

0.315 0.010 

cg1344 narG nitrate reductase, alpha subunit AGlxR 
ARosR 
RRipA 

RArnR 

0.271 0.032 

cg2119 pfkB 1-phosphofructokinase  RGlxR 
RSugR 

RFruR 

RLldR 

0.471 <0.001 

cg2403 qcrB cytochrome bc1 complex, cytochrome b 
subunit 

AGlxR 
AHrrA 

0.416 <0.001 

cg2404 qcrA cytochrome bc1 complex, Rieske iron-sulfur 
protein 

AGlxR 
AHrrA 

0.385 <0.001 

cg2406 ctaE cytochrome aa3 oxidase, subunit 3 AGlxR 
AHrrA 

RRamB 

0.467 <0.001 

cg2559 aceB malate synthase, part of glyoxylate shunt RGlxR 
RRamB 

ARamA 

ACspA2 

0.373 0.047 

cg2840 actA coenzyme A transferase acetate, propionate, 
succinate  

AGlxR 
RRamB 

0.427 0.009 

      
  ArgR regulon    

cg1580 argC N-acetyl-gamma-glutamyl-phosphate 
reductase  

RArgR 
RFarR 

0.144 0.007 

cg1582 argB acetylglutamate kinase  RArgR 
RFarR 

0.345 0.003 

cg1583 argD acetylornithine aminotransferase  RArgR 
RFarR 

0.291 0.011 

cg1584 argF ornithine carbamoyltransferase RArgR 
RFarR 

0.347 <0.001 

cg1585 argR transcriptional repressor of arginine 
biosynthesis, ArgR-family 

RArgR 
RFarR 

0.410 0.001 

cg1588 argH argininosuccinate lyase  RArgR 0.453 <0.001 
cg1814 carA carbamoyl-phosphate synthase, small subunit  RArgR 0.383 0.005 



Appendix Biosensor-driven adaptive laboratory evolution 143 

Locus Gene Annotation R/A Ratio 
3rd/2nd 

p value 

      
  ArsR regulon    

cg1705 arsB1 arsenite permease, arsenical resistance-3 
ACR3 family 

RArsR1 

RArsR2 
2.980 0.044 

cg1706 arsC1 arsenate reductase, arsenical pump modifier  RArsR1 

RArsR2 
2.555 0.018 

      
  SufR regulon    

cg1760 sufU cysteine desulfhydrase RSufR 

ROxyR 

ASigM 

ASigH 

3.175 0.032 

cg1762 sufC Fe-S cluster assembly ATPase RSufR 

ROxyR 

ASigM 

ASigH 

4.121 0.020 

cg1763 sufD Fe-S cluster assembly membrane protein RSufR 

ROxyR 

ASigM 

ASigH 

4.910 0.013 

cg1764 sufB Fe-S cluster assembly protein RSufR 

ROxyR 

ASigM 

ASigH 

5.956 0.016 

cg1765 sufR transcriptional regulator of suf operon RSufR 

ROxyR 

ASigM 

ASigH 

7.239 0.011 

      
  Further interesting targets    

cg3149
* 

alaT aminotransferase, uses alanine, glutamate, 2-
aminobutyrate and aspartate 

 0.660 0.089 

cg2877
* 

avtA aminotransferase, uses alanine, keto-
isovalerate and ketobutyrate 

 0.801 0.059 

      
  SOS and stress response    

cg0831 tusG trehalose uptake system, ABC-type, permease   0.379 0.005 
cg0834 tusE trehalose uptake system, ABC-type, bacterial 

extracellular solute-binding protein 
ALexA 0.353 0.024 

cg0892 - hypothetical protein  0.408 0.045 
cg1362 atpB F1FO-ATP synthase, -subunit of FO part ASigH 0.311 0.001 
cg1364 atpF F1FO-ATP synthase, -subunit of FO part ASigH 0.320 0.008 
cg1553 qor2 quinone oxidoreductase RQorR 

RHrcA 
2.959 0.031 
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Locus Gene Annotation R/A Ratio 
3rd/2nd 

p value 

cg2106 - hypothetical protein, conserved ASigH 2.846 0.042 
cg3011 groEL chaperonin GroEL ASigH 

RHrcA 
RHspR 

2.538 0.004 

cg3327 dps starvation-induced DNA protecting protein ADtxR 

ROxyR 
2.220 <0.001 

cg3330 - putative secreted protein ASigB 3.147 0.012 
      
  Others    

cg0061 rodA putative FTSW/RODA/SPOVE family cell 
cycle protein 

 0.442 0.030 

cg0177 - hypothetical protein  0.443 0.021 
cg0233  hypothetical protein, conserved  0.390 0.007 
cg0238 - putative L-gulonolactone oxidase, FAD/FMN-

containing dehydrogenase  
 0.426 <0.001 

cg0258 moaE molybdopterin cofactor synthase, large 
subunit 2 

 0.476 0.013 

cg0435 udgA1 UDP-glucose 6-dehydrogenase   0.445 <0.001 
cg0593 rpsJ 30S ribosomal protein S10  2.373 0.009 
cg0699 guaB2 inositol-5-monophosphate dehydrogenase  ASigH 0.417 0.009 
cg1076 glmU putative UDP-N-acetylglucosamine 

pyrophosphorylase  
 0.447 0.019 

cg1138 - putative phosphinothricin acetyltransferase  0.417 0.005 
cg1203 - putative Mg2+ chelatase subunit ChlI  0.412 <0.001 
cg1333 argS arginyl-tRNA synthetase   0.425 0.001 
cg1479 malP maltodextrin phosphorylase  0.298 0.005 
cg1730 - putative secreted protease subunit, 

stomatin/prohibitin homolog 
 0.403 0.020 

cg1793 - hypothetical protein, conserved  0.412 0.008 
cg1832  putative ABC-type iron-siderophore 

transporter, substrate-binding lipoprotein 
RCg1831 0.425 0.050 

cg1842 - putative secreted metalloprotease  0.427 0.034 
cg1905 - hypothetical protein CGP3 region  0.314 0.018 
cg2160 - putative hydrolase of metallo-beta-lactamase 

superfamily 
 0.468 <0.001 

cg2523 malQ 4-alpha-glucanotransferase   0.403 <0.001 
cg2704 - putative ABC-type putative sugar transporter, 

permease subunit 
 0.376 <0.001 

cg2857 purF amidophosphoribosyltransferase  0.395 0.001 
cg3117 cysX ferredoxin-like protein ACysR 

RDtxR 

RMcbR 

0.462 0.002 

cg3179 fadD2 acyl-CoA synthase   0.459 0.002 
cg3303 - putative transcriptional regulator, PadR-like   2.336 0.003 
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Supporting Figures 

Fig. S1 The increased fluorescent output of evolved C. glutamicum aceE strains does not derive 
from mutations within the sensor plasmids. Sensor plasmids (E1-E5) were isolated from evolved 
C. glutamicum aceE strains (black) and were reintroduced into the non-evolved parental strain 
C. glutamicum aceE (white). The specific eYFP fluorescent output of evolved strains and the 
non- aceE strains (containing the sensor of evolved strains) was recorded after 30 hours 
of cultivation in microtiter plates. The data represent average values from three independent 
cultivations including standard deviation. 
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Fig. S2 Growth (filled symbols) and L-valine production (empty symbols) of C. glutamicum 
aceE (black) and the evolved strains M1 (red) and M2 (blue) (Fig. 3, Tab. 2) during shake flask 

cultivation. First, cells were inoculated in 4 ml BHI medium containing 51 mM acetate and 
kanamycin (50 μg/ml), and incubated for eight hours at 30°C. Then, 1 ml of the preculture was 
used to inoculate a second preculture in 20 ml CGXII minimal medium containing 222 mM 
glucose, 254 mM acetate and kanamycin (50 μg/ml). After an overnight cultivation at 30°C, cells 
were inoculated to an OD600 of 1 in 50 ml CGXII minimal medium containing 222 mM glucose, 
254 mM acetate and kanamycin (50 μg/ml). 

 

 

Fig. S3 GC-ToF-MS analysis of the influence of urea on the intracellular metabolite pool of C. 
glutamicum aceE aceE ureD-E188* (Fig. 5). Peak areas of MS spectra are 
plotted against each other. The solid line marks the 45 degree angle line. Abbreviations: alanine 
(a), 2-aceto-lactate (ac), dihydroxyisovalerate (d), lactate (l), pyruvate (p), urea (u), valine (v). 
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Saturated peak areas are marked with an asterisk (*), while the plus (+) indicates the sum of peak 
areas of different trimethylsilyl (TMS) derivatives (L-valine 1TMS and L-valine 2TMS; L-
alanine 2TMS and L-alanine 3TMS). 

 

 

 

Fig. S4 Bioreactor batch fermentation of C. glutamicum aceE 
C. glutamicum aceE ureD- -

valine production were monitored for 45 hours. Fermentations were performed at 30°C in a 1.4 L 
glass bioreactor (Multifors Multi-Fermenter System) with independently controllable bioreactors 
(Infors, Einsbach, Germany). Cells of a 50 ml overnight pre-culture in BHI medium containing 
85 mM acetate were harvested, washed with 0.9% (w/v) saline and then inoculated to an OD600 of 
1.5 in 500 ml CGXII minimal medium containing 0.5% BHI, 254 mM acetate and 222 mM 
glucose. The bioreactors were sparged with 0.9 l min-1 synthetic air, while dissolved oxygen was 
measured using a polarimetric oxygen electrode (Mettler Toledo, Gießen, Germany). The 
dissolved oxygen concentration was adjusted to 30% by a stirrer speed cascade from 600 to 
1000 rpm. The pH was adjusted to pH 7 using 3 M potassium hydroxide and 3 M hydrochloric 
acid, while online pH measurements were done using a standard pH electrode (Mettler Toledo, 
Gießen, Germany). Foam development was suppressed by titration of 25% (v/v) silicon antifoam 
204/water suspension (Sigma Aldrich, Steinheim, Germany).  
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6.3 Supplemental information  Urease inactivity increases L-valine production in 

Corynebacterium glutamicum 

Supporting Tables 
Table S1 Comparative transcriptome analysis of mRNA levels of C. glutamicum aceE and 

aceE ureD-E188* after 28 hours of shake flask cultivation in CGXII minimal medium 
containing 222 mM glucose and 254 mM acetate. Listed are all genes showing a -fold altered 
mRNA level and a p 
mRNA level is given as average ratio ( aceE ureD- aceE) cultivated from three 
independent biological replicates.  

Locus Gene Annotation Ratio aceE ureD-
aceE 

p value 

  GlxR regulon   

cg0566 gabT 4-aminobutyrate aminotransferase 2.13 0.195 
cg0791 pyc pyruvate carboxylase 0.17 0.281 
cg0797 prpB1 2-methylisocitrate lyase 2.09 0.143 
cg1143 - putative transcriptional regulator 1.72 0.095 
cg2403 qcrB cytochrome bc1 complex, cytochrome b 

subunit 
0.28 0.255 

cg2410 ltsA glutamine-dependent amidotransferase  1.67 0.001 
cg2831 ramA transcriptional regulator, acetate 

metabolism 
0.20 0.299 

cg3216 gntP gluconate permease, gluconate:H+ 
symporter GntP family 

2.20 0.055 

cg3219 ldhA  NAD-dependent L-lactate dehydrogenase 0.24 0.300 
cg3227 lldD menaquinone-dependent L-lactate 

dehydrogenase  
0.26 0.291 

     

  AmtR regulon   

cg0115 ureC urease alpha subunit 0.34 0.310 
cg1064 urtC ABC-type urea uptake system, permease 

subunit 
1.60 0.200 

cg1781 soxA sarcosine oxidase- C-terminal fragment 1.66 0.002 
     

  SOS and stress response   

cg0617 - putative molybdopterin-guanine 
dinucleotide biosynthesis protein 

0.37 0.160 

cg1319 - putative ATPase involved in DNA repair 1.58 0.070 
cg1362 atpB F1FO-ATP synthase, a-subunit of FO part 1.63 0.001 
cg1363 atpE F1FO-ATP synthase, c-subunit of FO part 0.34 0.324 
cg1367 atpG F1FO-ATP synthase, -subunit of F1 part 0.19 0.287 



150 Urease inactivity increases L-valine production Appendix 

Locus Gene Annotation Ratio aceE ureD-
aceE 

p value 

cg1696 - putative antibiotic efflux permease of the 
major facilitator superfamily 

9.00 0.167 

cg1708 - hypothetical protein, conserved 2.98 0.067 
cg1765 sufR transcriptional regulator of suf operon 0.24 0.142 
cg2644 clpP2 ATP-dependent Clp protease proteolytic 

subunit  
0.18 0.292 

     
  RipA/DtxR regulon   

cg0310 katA catalase  0.61 0.382 
     

cg0445 sdhC  succinate:menaquinone oxidoreductase, 
cytochrome b subunit 

0.69 0.498 

     
cg0768 - putative iron-siderophore ABC transporter 2.15 0.187 
cg0769 - putative iron-siderophore ABC transporter 2.87 0.152 
cg1345 narK nitrate/nitrite antiporter 0.39 0.311 

     
  Specific biosynthesis pathways   

cg0977 - putative ABC-type transport system 0.50 0.001 
cg1218 ndnR transcriptional repressor of NAD de novo 

biosynthesis genes  
2.07 0.059 

cg1588 argH argininosuccinate lyase 0.07 0.224 
cg2269 - putative permease 1.78 0.153 
cg2789 mrx2 mycoredoxin 2 0.44 0.248 
cg3359 trpE anthranilate synthase component I  0.17 0.343 

     
  TCA   

cg2425 sucE succinate exporter 1.54 0.063 
cg0445 sdhC  succinate:menaquinone oxidoreductase, 

cytochrome b subunit 
0.69 0.498 

cg2613 mdh malate dehydrogenase (EC:1.1.1.37) 0.58 0.393 
     
  Others   

cg0074 - putative sulfurtransferase 1.73 0.050 
cg0181 alkB alkylated DNA repair protein 1.63 0.077 
cg0183 - putative lyse type translocator 1.52 0.070 
cg0208 - hypothetical protein 0.14 0.169 
cg0248 - putative ABC-type polysaccharide/polyol 

phosphate export sytem 
1.56 0.021 

cg0356 - putative serine protease 1.50 0.152 
cg0368 - putative secreted protein, conserved  1.88 0.145 
cg0369 - putative secreted protein, conserved  1.57 0.045 
cg0385 bglS' beta-glucosidase precursor-N-terminal 

domain 
1.62 0.155 

cg0401 rmlA1 TDP-glucose pyrophosphorylase 1.55 0.159 
cg0525 - hypothetical protein 3.07 0.174 
cg0640 fdxB ferredoxin no. 2, 2Fe-2S 1.64 0.138 
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Locus Gene Annotation Ratio aceE ureD-
aceE 

p value 

cg0658 rptA terminal rhamnopyranosyltransferase 1.72 0.096 
cg0672 - hypothetical protein, conserved 1.95 0.080 
cg0733 - putative ABC transporter ATP-binding 

protein 
1.78 0.087 

cg0752 - putative secreted or membrane protein 0.25 0.140 
cg0765 - putative secreted protein 2.05 0.130 
cg0784 - putative cell wall-associated hydrolase 1.69 0.050 
cg0794 yciC putative P-loop GTPase  2.03 0.046 
cg0852 - hypothetical protein, conserved 1.51 0.033 
cg0866 - putative purine/pyrimidine phosphoribosyl 

transferase 
1.64 0.070 

cg0872 - putative GTPase 0.40 0.199 
cg0919 tnp18a transposase 1.67 0.001 
cg0973 pgi glucose-6-phosphate isomerase  0.28 0.274 
cg1111 eno enolase, phosphopyruvate hydratase 0.26 0.260 
cg1118 - putative pyrimidine reductase 1.59 0.001 
cg1133 glyA serine hydroxymethyltransferase  0.33 0.198 
cg1149 - hypothetical protein  1.58 0.135 
cg1236 tpx thiol peroxidase  0.03 0.088 
cg1302 - putative HKD family nuclease 1.58 0.165 
cg1354 rho transcription termination factor Rho 1.86 0.005 
cg1355 prfA peptide chain release factor 1 RF-1 2.11 0.059 
cg1360 - putative membrane protein 1.95 0.025 
cg1413 rbsB ribose/xylose transport 0.04 0.263 
cg1457 dnaQ2 putative DNA polymerase III, epsilon 

subunit  
1.59 0.124 

cg1467 - putative transcriptional regulator 1.69 0.119 
cg1501 coaD phosphopantetheine adenylyltransferase  1.63 0.085 
cg1754 - hypothetical protein 1.77 0.088 
cg1807 dfp phosphopantothenoylcysteine 

synthase/decarboxylase 
1.71 0.146 

cg1827 aroB 3-dehydroquinate synthase  1.61 0.073 
cg1829 aroC chorismate synthase  2.01 0.084 
cg1922 - hypothetical protein CGP3 region 2.10 0.109 
cg1950 tnp14b transposase  fragment CGP3 region 1.60 0.018 
cg1978 - hypothetical protein CGP3 region 1.54 0.067 
cg1984 - hypothetical protein CGP3 region 2.03 0.079 
cg1993 - hypothetical protein CGP3 region 1.94 0.145 
cg2072 - putative di-and tricarboxylate transporter 1.55 0.075 
cg2088 - hypothetical protein 1.53 0.003 
cg2092 sigA RNA polymerase sigma factor 0.37 0.320 
cg2102 sigB RNA polymerase sigma factor 0.23 0.315 
cg2104 galE UDP-glucose 4-epimerase 0.20 0.314 
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Locus Gene Annotation Ratio aceE ureD-
aceE 

p value 

cg2340 - putative ABC-type amino acid transport 
system 

1.67 0.001 

cg2382 - putative GCN5-related N-acetyltransferase 1.62 0.037 
cg2389 - putative membrane protein 1.57 0.101 
cg2446 glnE glutamate-ammonia-ligase 

adenylyltransferase 
0.74 0.182 

cg2483 - hypothetical protein 1.98 0.101 
cg2490 - putative secreted guanine-specific 

ribonuclease 
1.77 0.029 

cg2494 dgt deoxyguanosinetriphosphate 
triphosphohydrolase-like protein 

1.55 0.009 

cg2568 dctM C4-dicarboxylate transport system 
permease large protein 

6.58 0.177 

cg2574 - putative threonine efflux transporter 1.51 0.075 
cg2673 - putative permease of the major facilitator 

superfamily 
1.63 0.035 

cg2757 tnp15a transposase 1.67 0.021 
cg2772 clpS ATP-dependent Clp protease adaptor 

protein 
0.46 0.312 

cg2797 - hypothetical protein, conserved 2.26 0.121 
cg2799 pknE putative secreted protein 0.37 0.201 
cg2868 nuc putative extracellular nuclease 1.95 0.064 
cg2888 phoR two component response regulator 0.08 0.185 
cg2900 ddh meso-diaminopimelate dehydrogenase  1.70 0.023 
cg2918 - putative dehydrogenase or related protein 1.94 0.157 
cg2919 - putative oxidoreductase 1.54 0.015 
cg2940 - putative ATPase components of ABC-type 

transport system 
1.97 0.133 

cg3016 - hypothetical protein 2.03 0.083 
cg3049 fprA putative ferredoxin/ferredoxin-NADP 

reductase  
0.24 0.293 

cg3060 cgtS6 two component sensor kinase 2.11 0.086 
cg3065 - hypothetical protein, conserved 1.56 0.168 
cg3146 bglY' beta-glucosidase-fragment 1.51 0.057 
cg3148 'fepC' putative ABC transporter 1.57 0.129 
cg3185 - hypothetical protein, conserved 1.53 0.161 
cg3199 - putative hydrolase of the HAD superfamily 1.61 0.195 
cg3231 - hypothetical protein 1.77 0.162 
cg3284 copS two component sensor kinase 1.51 0.050 
cg3349 nagL maleylpyruvate isomerase 3.21 0.186 
cgr10 - 5S ribosomal RNA 1.54 0.106 

cgtRNA_
3542 

- Tyr tRNA 1.55 0.164 

cgtRNA_
3570 

- Met tRNA 1.52 0.020 
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Supporting Figures 
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Fig. S1 GC-ToF-MS analysis of the supernatant after cultivating C. glutamicum aceE with and 
without urea and aceE ureD-E188* with urea for 30 hours. A. Overview of MS spectra. B. MS 
spectra of succinate and 2-acetolactate. The red arrow indicates the reading direction (succinate 
and 2-acetolactate peaks are comparable among themselves, but not both molecules with each 
other). Metabolome analyses of supernatants were performed on a 6890N gas chromatograph 
(Agilent, Santa Clara, USA) coupled to a Micromass GCT Premier high-resolution time-of-flight 
mass spectrometer (Waters, Milford, USA). Sample preparation, derivatization, MS operation 
and peak identification were performed as described previously (Paczia et al., 2012). 
Abbreviation: trimethylsilyl (TMS) derivatives.  
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6.4 Supplemental information  Screening of an Escherichia coli promoter library for a 

phenylalanine biosensor 

Supporting Figures 

 

Fig. S1 Screening of galactose and L-phenylalanine responsive promoters. a Initially, the pooled strains 
containing of the Alon promoter library were incubated in 20 ml M9 minimal medium without effector 
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molecules and split in fractions of low and high fluorescence to reduce the fraction of constitutively active 
or inactive promoters (not shown). Subsequently, cells with low fluorescence were re-incubated in 20 ml 
M9 minimal medium containing 0.5% (w/v) of the effector molecule galactose for six hours at 37°C and 
120 rpm. One million cells from the green gate were sorted on filter plates and incubated overnight at 

promoters, counter-selection was performed by subsequently incubating the isolated cells in 20 ml M9 
minimal medium cont
promoters) were sorted on filter plates and incubated overnight in 4 ml LB with kanamycin. To reduce the 
fraction of false positive clones, one further round of toggled screening was performed. The green and red 
arrows indicate the gate chosen for cell sorting throughout the screening procedure. A culture grown in 
glucose minimal medium served as reference. The numbers indicate the percentage of the entire 
population covered by the respective gate. b Biomass formation and specific GFPmut2 fluorescence of E. 
coli K-12 MG1655 containing plasmids pUA66 , pUA66_PgalS-gfpmut2 lacZ-gfpmut2 

37°C and 1200 rpm in M9 
minimal medium containing 0.5% (w/v) glucose as negative control (filled symbols) or 0.5% (w/v) 
galactose as inductor (empty symbols). c Specific Venus fluorescence of selected clones from the Alon 
library containing promoter-gfpmut2 fusions that were enriched during the screening for L-phenylalanine 
responsive promoters. Cells were cultivated in the presence (black bar) or without (gray bar) 3 mM L-
alanyl-L-phenylalanine (Ala-Phe). Numbers above bars indicate the minimal dynamic range (fold-change 
induced versus non-induced). b and c Data represent average values of three independent biological 
replicates.  

 

 

Fig. S2 Flow cytometric (FC) analyses of different biosensor designs a type two, b type four and c type 
three in presence of different ratios of Ala-Ala and Ala-Phe (overall concentration 3 mM) showing 
histograms of the Venus fluorescence. Cells were cultivated in microtiter plates in M9 minimal medium 
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containing 0.5% (w/v) glucose and kanamycin in the presence of different Ala-Phe/Ala-Ala ratios. After 
seven hours of incubation, the sensor output was analyzed by FC.  

 

 

 

 

Fig. S3 Growth and specific Venus fluorescence of isolated mutants. a and b 90 isolated mutants (each 45 
mutants depicted in a and b) were analyzed by cultivation at microtiter scale in phenylalanine production 
medium containing 0.5% (w/v) glucose and kanamycin for 28 hours (colored lines). Growth and 
fluorescence of the non-mutagenized E. coli K-12 MG1655/pJC1-mtr sensor-type1 strain is indicated by 
the black line. Data shown for isolated mutant clones represent single measurements; the data shown for 
the non-mutagenized wild type-strain represent average data of three biological replicates.  
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Fig. S4 Biosensor-based single-cell analysis reveals cell-to-cell variability of E. coli K-12 MG1655. a FC 
analysis of E. coli K-12 MG1655 pJC1-mtr sensor-type1 cells after eight hours of cultivation in 20 ml 
phenylalanine production medium containing 0.5% (w/v) glucose and kanamycin at 37°C and 120 rpm. 
Dot plots display the side scatter (SSC), forward scatter (FSC) and Venus fluorescence of single cells. 2 x 
105 cells were sorted from gate P1 (red) and P2 (green) in 4 ml LB with kanamycin and incubated 
overnight at 37°C and 170 rpm. The following day, cells were inoculated in 20 ml phenylalanine 
production medium, incubated for eight hours and re-analyzed by FC (P1, red and P2, green). The 
numbers in the gates indicate the percentage of cells showing spontaneously increased fluorescent outputs. 
b Live cell imaging of isogenic microcolonies of E. coli K-12 MG1655 cells containing the sensor 
plasmid pJC1-mtr sensor-type1 in presence of 3 mM (upper row) and without (lower row) the dipeptide L-
alanyl-L-phenylalanine (Ala-Phe). The cells were cultivated for eight hours in L-phenylalanine production 
medium in microfluidic monolayer cultivation chambers as previously described (Grünberger et al., 2012; 
Grünberger et al., 2015). (Grünberger et al., 2012; Grünberger et al., 2015). 
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6.5 Supplemental information  Discussion 

Supporting Tables 

Table S4.2.1: Overview of mutations identified in five mutants (1-5) isolated by FACS HT 
screening of an MNNG-mutagenized E. coli K-12 MG1655 library using the mtr biosensor 
encoded on the plasmid pJC1-mtr biosensor type1. Sequencing and comparative analysis were 
performed as previously described (Mahr et al., 2015). Reads were mapped using accession 
NC_000913 as the reference genome. Mutations in genes associated with the biosynthesis or 
transport of aromatic amino acids are highlighted with an asterisk. Abbreviation: Original strain 
E. coli K-12 MG1655 pJC1-mtr biosensor type1 (parental strain).  
 

Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b0040 caiT A203V - x - - - - 

b0043 fixC G316S - x - - - - 

b0068 thiB T160I - x - - - - 

b0073 leuB A270V - x - - - - 

b0084 ftsI V453I - - - - x - 

b0085 murE G378D - x - - - - 

b0088 murD A109T - x - - - - 

b0219 yafV A82T - - - - x - 

b0463 acrA A355T - - - - x - 

b0532 sfmD A388V - - - - x - 

b0621 dcuC D100N - - - - x - 

b0841 ybjG R139C - - - - - x 

b0844 ybjI P56S - - - - - x 

b0847 ybjL A428V - - - - - x 

b0847 ybjL L298F - - - - - x 

b0876 ybjD P332S - - - x - - 

b0974 hyaC T216I - - - - - x 

b0984 gfcD G264D - - - - - x 

b0997 torA R592H - - - - - x 

b0998 torD A96T - - - - - x 

b0999 cbpM G29D - - - - - x 

b1018 efeO E80K - - - - - x 

b1022 pgaC R293C - - - - - x 

b1023 pgaB P126S - - - - - x 

b1159 mcrA P249S - - x - - - 

b1177 ycgJ G15R - x - - - - 

b1180 ycgM E86K - x - - - - 

b1184 umuC A178T - x - - - - 

b1192 ldcA S232N - - - x - - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b1194 ycgR A170T - - - x - - 

b1194 ycgR S2N - - - x - - 

b1195 ymgE M21I - x - - - - 

b1198 dhaM G103D - - - x - - 

b1201 dhaR G111E - x - - - - 

b1201 dhaR A122T - x - - - - 

b1202 ycgV P653L - x - - - - 

b1207 prs G294D - - - x - - 

b1220 ychO P280S - - - x - - 

b1224 narG H706R - - - x - - 

b1224 narG T791I - - - x - - 

b1247 oppF G85D - x - - - - 

b1255 yciC G38R - - x - - - 

b1261 trpB* R363H - - - x - - 

b1261 trpB* E155K - - - x - - 

b1263 trpD* A130T - - - x - - 

b1264 trpE* C377Y - - x - - - 

b1276 acnA V766M - - x - - - 

b1315 ycjS D301N - - x - - - 

b1320 ycjW T88I - - x - - - 

b1372 stfR G859E - - x - - - 

b1378 pfo A920V - - x - - - 

b1386 tynA T717I - - x - - - 

b1387 paaZ H525Y - - x - - - 

b1392 paaE V72M - - x - - - 

b1394 paaG L209F - - - - x - 

b1397 paaJ E219K - - x - - - 

b1407 ydbD G396D - - x - - - 

b1407 ydbD A531T - - x - - - 

b1407 ydbD A697T - - x - - - 

b1411 ynbD W235* - - x - - - 

b1411 ynbD W236* - - x - - - 

b1413 hrpA A347T - - x - - - 

b1421 trg G295D - - x - - - 

b1431 ydcL G188D - - x - - - 

b1450 mcbR E76K - - x - - - 

b1459 yncI G197D - - x - - - 

b1463 nhoA W119* - - x - - - 

b1464 yddE P150S - - x - - - 

b1468 narZ P90S - - x - - - 

b1483 ddpF P265S - - x - - - 

b1486 ddpB A107V - - x - - - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b1487 ddpA A297V - - x - - - 

b1487 ddpA T96S - - - - x - 

b1492 gadC P481S - - x - - - 

b1493 gadB P191S - - x - - - 

b1501 ydeP P564L - - x - - - 

b1612 fumA P5S - - - - x - 

b1623 add A201V - - - x - - 

b1711 btuC G153E - - - x - - 

b1750 ydjX L12F - - - x - - 

b1753 ynjA A120V - - - x - - 

b1754 ynjB S264L - - - x - - 

b1764 selD G181E - - - x - - 

b1774 ydjJ G148R - - - x - - 

b1790 yeaM A239T - - - x - - 

b1808 yoaA A62T - - - x - - 

b1808 yoaA P7L - - x - - - 

b1809 yoaB P90S - - - x - - 

b1833 yebS S119L - - - x - - 

b1849 purT R68H - - - - x - 

b1864 yebC T174I - - x - - - 

b1864 yebC T126I - - x - - - 

b1868 yecE G128D - - x - - - 

b1876 argS G297D - - - - - x 

b1876 argS V574I - - x - - - 

b1886 tar P539S - - - - - x 

b1896 otsA Q444* - - x - - - 

b1907 tyrP* D280N - - x - - - 

b1916 sdiA V211I - - - - - x 

b1919 dcyD A143V - - x - - - 

b1924 fliD G8R - - x - - - 

b1929 yedE V21I - - x - - - 

b1938 fliF G101D - - x - - - 

b1943 fliK D142G - - x - - - 

b1952 dsrB A23T - - x - - - 

b1957 yodC V11I - - x - - - 

b1959 yedA* A303V - - x - - - 

b1967 hchA S34F - - x - - - 

b1976 mtfA P232L - - x - - - 

b1978 yeeJ V1431I - - - - - x 

b1988 nac G170E - - x - - - 

b1992 cobS G228S - - x - - - 

b2000 flu T87I - - x - - - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b2000 flu G484S - - - - - x 

b2000 flu G751D - - - - - x 

b2000 flu G826S - - - - - x 

b2006 yeeW D15N - - - - - x 

b2025 hisF D182N - - - - - x 

b2042 wcaN P202S - - x - - - 

b2043 wcaM R278C - - - - - x 

b2046 wzxC P167S - - - - - x 

b2049 cpsB A407V - - - - - x 

b2049 cpsB S282F - - - - - x 

b2064 asmA Q384* - - - - - x 

b2069 yegD G272D - - x - - - 

b2071 yegJ D114N - - x - - - 

b2076 mdtC G251D - - - - - x 

b2078 baeS G59S - - - - - x 

b2078 baeS G137D - - x - - - 

b2079 baeR R51H - - - - - x 

b2086 yegS D244N - - - - - x 

b2091 gatD R304W - - x - - - 

b2095 gatZ A413V - - - - - x 

b2095 gatZ A32T - - - - - x 

b2096 gatY G139D - - - - - x 

b2097 fbaB P24S - - x - - - 

b2100 yegV G53D - - x - - - 

b2100 yegV A62T - - x - - - 

b2103 thiD R197W - - - - - x 

b2124 yehS A77V - - x - - - 

b2131 osmF A8V - - x - - - 

b2132 bglX R486C - - - - - x 

b2134 pbpG R274C - - - - - x 

b2134 pbpG R104C - - x - - - 

b2139 mdtQ P359L - - - - - x 

b2139 mdtQ P141S - - x - - - 

b2142 yohK V160I - - x - - - 

b2144 sanA E228K - - x - - - 

b2146 preT E295K - - x - - - 

b2151 galS P291L - - x - - - 

b2151 galS P47S - - - - - x 

b2154 yeiG D92N - - x - - - 

b2158 yeiH D130N - - - - - x 

b2159 nfo V174I - - - - - x 

b2163 yeiL V85M - - x - - - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b2176 rtn P326S - - x - - - 

b2176 rtn G494D - - x - - - 

b2178 yejB S351N - - - - - x 

b2180 yejF E503K - - - - - x 

b2206 napA S618S - - x - - - 

b2206 napA T297M - - x - - - 

b2214 apbE A192V - - - - - x 

b2241 glpA P123L - x - - - - 

b2332 yfcO G183D - - - - x - 

b2368 emrK A202V - - - - x - 

b2464 talA G138E - - - - x - 

b2479 gcvR D38N - - - - x - 

b2482 hyfB R380Q - - - - x - 

b2491 hyfR A285T - - - - x - 

b2493 yfgO A154V - - - - x - 

b2538 hcaE G318D - - - - x - 

b2574 nadB V41I - - - x - - 

b2599 pheA* D18N - - - - x - 

b2600 tyrA* G90E - x - - - - 

b2642 yfjW T227I - - x - - - 

b2661 gabD G459D - - - - x - 

b2677 proV A194T - - - - x - 

b2678 proW R181H - - - - x - 

b2681 ygaY A131T - - - - x - 

b2698 recX W161* - x - - - - 

b2703 srlE G73D - - - - x - 

b2705 srlD D209N - - - - x - 

b2710 norV D73N - - - - x - 

b2710 norV W119* - - - - x - 

b2730 hypE G241D - - - - x - 

b2750 cysC A153V - - - - x - 

b2764 cysJ A194V - - - - x - 

b2764 cysJ T25M - - - - x - 

b2764 cysJ P6S - - - - x - 

b2766 ygcN E277K - - - - x - 

b2775 yqcE G328E - - - - x - 

b2784 relA P253S - - - - x - 

b2784 relA A247V - - - - x - 

b2785 rlmD T241I - - - - x - 

b2786 barA V375I - - - - x - 

b2786 barA P797S - x - - - - 

b2803 fucK A412V - - - - - x 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b2810 csdA A198V - x - - - - 

b2822 recC D906N - x - - - - 

b2834 tas T342I - - - - x - 

b2835 lplT R395H - - - - x - 

b2838 lysA E202K - x - - - - 

b2873 hyuA A46V - x - - - - 

b2874 yqeA V184M - - - - x - 

b2879 ssnA D207N - - - - x - 

b2882 xanQ D466N - - - - x - 

b2933 cmtA G109E - - - - x - 

b2938 speA V365M - - - - x - 

b2942 metK T44I - - - - x - 

b2943 galP Q147* - - - - x - 

b2955 yggW A377V - - - - x - 

b2976 glcB E630K - - - - x - 

b2979 glcD E288K - - - - x - 

b2981 yghO W22* - x - - - - 

b2983 yghQ A321T - - - - x - 

b2988 gss W305* - x - - - - 

b2988 gss E37K - x - - - - 

b2993 hybD T87I - - - - x - 

b2995 hybB G235S - x - - - - 

b2996 hybA S122F - - - - x - 

b2996 hybA D43N - x - - - - 

b2997 hybO P220S - - - - x - 

b3006 exbB V237I - x - - - - 

b3008 metC A91V - x - - - - 

b3009 yghB G129E - - - - x - 

b3013 yqhG S195F - x - - - - 

b3017 ftsP A158V - x - - - - 

b3019 parC G53S - x - - - - 

b3020 ygiS W84* - x - - - - 

b3020 ygiS V76M - x - - - - 

b3046 yqiG A573V - x - - - - 

b3046 yqiG G1191D - - - - x - 

b3049 glgS T34I - - - - x - 

b3051 yqiK V53I - - - - x - 

b3051 yqiK G176D - - - - x - 

b3056 cca G16E - x - - - - 

b3056 cca G149D - x - - - - 

b3067 rpoD D193N - - x - - - 

b3093 exuT Q431* - - - - x - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b3095 yqjA A143V - - - - x - 

b3102 yqjG R275C - - - - x - 

b3104 yhaI P49L - - - - x - 

b3110 yhaO G183D - - - - x - 

b3114 tdcE R67H - - - - x - 

b3124 garK S343N - - - - x - 

b3124 garK A51V - - - - x - 

b3128 garD E71K - - - - x - 

b3142 yraH G11S - - - - x - 

b3142 yraH G18D - - - - x - 

b3151 yraQ A9T - - - - x - 

b3158 yhbU L13F - - - - x - 

b3160 yhbW A220V - - - - x - 

b3161 mtr* D317N - - - - x - 

b3162 deaD G459D - - - - x - 

b3162 deaD V208M - - - - x - 

b3163 nlpI E290K - - - - x - 

b3163 nlpI A155T - - - - x - 

b3164 pnp E646K - - - - x - 

b3165 rpsO D74N - - - - x - 

b3168 infB T344I - - - - x - 

b3178 ftsH V86I - - - - x - 

b3182 dacB W153* - - - - x - 

b3194 mlaE T227M - - - - x - 

b3225 nanA P182L - - x - - - 

b3482 rhsB R772K - - - - x - 

b3591 selA A373T - - - - x - 

b3638 yicR G82E - - - - x - 

b3671 ilvB D126N - - -x - - - 

b3725 pstB L177F - - - - - x 

b3744 asnA E244K - - - - - x 

b3745 viaA S397N - - - x - - 

b3971 rrfB P24S - - - - x - 

b4239 treC A344T - - - - x - 

b4241 treR R117C - - - - x - 

b4279 yjhB R63K - - - - x - 

b4295 yjhU M156I - - - - x - 

b4296 yjhF W427* - - - - x - 

b4301 sgcE G171R - - - - x - 

b4305 sgcX D193N - - - - x - 

b4305 sgcX G90D - - - - x - 

b4308 yjhR T373I - - - - x - 
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Gene Gene 
name 

Mutein Parental 
strain 

Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 

b4312 fimB T177I - - - - x - 

b4319 fimG S55F - - - - x - 

b4320 fimH S93F - - - - x - 

b4324 uxuR P26S - - - - x - 

b4325 yjiC A248T - - - - x - 

b4326 iraD P78S - - - - x - 

b4332 yjiJ A160T - - - - x - 

b4356 lgoT A287V - x - - - - 

b4379 yjjW P239S - x - - - - 

b4392 slt V51M - x - - - - 

b4393 trpR* G85E - x - - - - 

b4423 ldrC S29G - - - - x - 

b4462 ygaQ T598I - x - - - - 

b4463 ygcU L432F - - - - x - 

b4466 sslE G1484S - - - - x - 

b4466 sslE D619N - - - - x - 

b4466 sslE R146C - - - - x - 

b4467 glcF V156M - - - - x - 

b4467 glcF D96N - - - - x - 

b4492 ydbA E52K - - x - - - 

b4492 ydbA S641N - - x - - - 

b4498 gatR L576F - - - - - x 

b4498 gatR P83L - - - - - x 

b4537 yecJ T77I - - - - - x 

b4565 sgcB C47Y - - - - x - 

b4582 yoeA G302S - - - - - x 

b4639 yeeH S20N - - x - - - 

b4661 yfcU D603N - x - - - - 

b4696 yneO A1023T - - x - - - 

 

Table S4.2.1.2: Summary of identified amino acid exchanges or stop codons (stop) in isolated 
clones by the mtr biosensor-based FACS HT screening of an E. coli K-12 MG1655 library 
mutagenized by MNNG. 

Amino acid Exchanged to... Amount  Amino acid Exchanged to... Amount 

Alanine Threonine 27  Glutamine Stop 3 

Alanine Valine 32  Arginine Cysteine 9 

Cysteine Tyrosine 2  Arginine Tryptophan 2 

Aspartate Asparagine 25  Arginine Histidine 7 
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Amino acid Exchanged to... Amount  Amino acid Exchanged to... Amount 

Aspartate Glycine 1  Arginine Glutamine 1 

Glutamate Lysine 18  Arginine Lysine 2 

Glycine Aspartate 32  Serine Leucine 2 

Glycine Glutamate 13  Serine Phenylalanine 6 

Glycine Serine 9  Serine Asparagine 7 

Glycine Arginine 5  Serine Glycine 1 

Histidine Tyrosine 1  Threonine Methionine 2 

Histidine Arginine 1  Threonine Isoleucine 19 

Leucine Phenylalanine 7  Threonine Serine 1 

Methionine Isoleucine 2  Valine Methionine 9 

Proline Leucine 10  Valine Isoleucine 13 

Proline Serine 27  Tryptophan Stop 10 

 

Supporting Figures 

 

Fig. S4.2.2.1 The development of the biomass-specific L-leucine and L-alanine production 
during biosensor-driven adaptive laboratory evolution of the growth-coupled L-leucine 
production strain C. glutamicum MV-Leu7. The MV-Leu7 strain containing the plasmid-encoded 
Lrp biosensor was cultivated in CGXII minimal medium until reaching an OD600 of 4. 
Subsequently, the cells with the top 10% fluorescent output were isolated by FACS and re-
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cultivated. The procedure of iterative sorting and re-cultivation was modified from Mahr et al. 
(2015).  
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